(-3;-17) - точка экстремума функции (минимум)
Объяснение:
Точки экстремума - это такие точки, в которых значение функция, скажем так, меняет свою скорость роста. То есть до неё функция либо возрастала, либо убывала, а после неё наоборот - начинает либо убывать, либо возрастать.
Для нахождения точки экстремума потребуется найти производную 1 порядка:
После этого мы приравниваем получившуюся функцию к нулю и решаем получившееся уравнение:
2x+6=0 => 2x=-6 => x=-3
но необходимо убедиться, что данная точка действительно является экстремумом, для этого мы смотрим как ведёт себя функция y' до и после точки x0=-3 (можно подставить любые значения <-3 а потом значение >-3, если получаются разные по знаку числа, к примеру отрицательное-положительное или положительное-отрицательное, то данная точка действительно является экстремумом функции y, а точнее в данном случае она является минимумом).
Ну а теперь осталось подставить значение x0=-3 в изначальную функцию y и найти y0
Ну и запишем ответ:
(-3;-17) - точка экстремума функции (а точнее - минимум)
Поделитесь своими знаниями, ответьте на вопрос:
Найдется ли среди пар чисел (2; -; 8) и (4; 4) решение системы: а){10х-3у=29 {-8x+y=-19 б){-3x+y=11 {5x+y=3
Система 1.
а){10х-3у=29
{-8x+y=-19
Решение:
Числа (2;-3)
{10*2-3*(-3)=29 <=> {29=29
{-8*2+(-3)=-19 {-19=-19
(2;-3) является решением системы
Числа (-1;8)
{10*(-1)-3*8=29 <=> {-34=29
{-8*(-1)+8=-19
(-1;8) не является решением системы.
Числа (4;4)
{10*4-3*4=29 <=> {28=29
{-8*4+4=-19
(4;4) не является решением системы
Система 2.
б){-3x+y=11
{5x+y=3
Числа (2;-3)
P { margin-bottom: 0.21cm; }
{-3*2+(-3)=11 <=> {-9=11
{5*2+(-3)=3
(2;-3) не является решением системы
Числа (-1;8)
{-3*(-1)+8=11 <=> {11=11
{5*(-1)+8=3 {3=3
(-1;8) является решением системы
Числа (4;4)
{-3*4+4=11 <=> {-8=11
{5*4+4=3
(4;4) не является решением системы