2) Найдите угловой коэффициент касательной к графику функций: а) в точке с абсциссой x0=п\3
Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке
3. Вычислите f'(п\6), если f(x)=2cosx+x^2-пx\3 +5
4. Производная от пути является скорость, т.е. s'(t) = v(t)
5. Найдите все значения x, при которых выполняется неравенство f'<0, если f(x)=81x-3x^2 Производная функции:
6. составьте уравнение касательных к графику функции y=x^4+x^2-2 в точках его пересечения его с осью абсцисс. Найдите точку пересечения этих касательных
Найдем точки пересечения исходной функции с осью Ох:
Решая это уравнение как квадратное уравнение относительно x^2, получим корни
x² = -2 - не удовлетворяет
x² = 1 откуда x0 = ±1
Найдем теперь эти уравнения касательных
Приравнивая касательные, найдем точки пересечения касательных
(1;-6) - пересечение касательных. (см. рисунок).
7. Найдите все значения х, при которых выполняется неравенство f'=0, если f(x)=cos2x+x√3 и x э [0;4п]
Отбор корней из x ∈ [0;4π]
8. Докажите, что функция y=(2x+5)^10 удовлетворяет соотношению 8000x^10(2x+5)^15-(y')^3=0
Не удовлетворяет.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Составте уравнение касательной к графику функции y=f(x) в точке с абциссой x=а, если: f(x)=x^3-3x+5, a=-1
f´(x)=3xˇ2-3, f´(a)=f´(-1)=3.(-1)ˇ2-3=3-3=0
k=tg alfa = 0
y-7=0(x+1),y=7