Татьяна1252
?>

10й класс, голову уже сломала, , найдите все значения а, при каждом из которых любое действительное х является решением неравенства х в квадрате+(3а-1)х+а больше нуля заранее большое : )

Алгебра

Ответы

Goldaram84
Дано:  x²+(3a-1)x+a>0    и    x∈(-∞;+∞)
Найти: а-?
Решение:
y=x²+(3a-1)x+a  - парабола, ветви которой направлены вверх, т.к. коэффициент при х² равен 1, т.е. больше нуля.
По условию, х- любое число, значит вся парабола лежит выше оси Ох. Следовательно, D<0
D=(3a-1)²-4*1*a=9a²-6a+1-4a=9a²-10a+1
9a²-10a+1<0
D=(-10)²-4*9*1=100-36=64=8²
a₁=(10+8)/(2*9)=18/18=1          a₂=(10-8)/(2*9)=2/18=1/9
9(a-1)(a- 1/9)<0
        +                                 -                                   +
(1/9)  (1)

ответ: a∈ (1/9; 1)
DudukinSerega2507834
Для того, чтобы выполнялось необходимое условие, требуется, чтобы график параболы находился над осью Ох. Это возможно, когда коэффициент при х² больше нуля и дискриминант квадратного уравнения меньше нуля

х²+(3а-1)х+а=0
D=(3а-1)²-4а=9а²-6а+1-4а=9а²-10а+1<0
9(а-1/9)(а-1)<0
(а-1/9)(а-1)<0
а∈(1/9;1)
ВасилийМалюга152
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного 533 \ 565 , которая должна выражать дату (в каком-то неизвестном представлении).

Обозначим второе число (дата), как x_5 x_4 x_3 \ x_2 x_1 x_o ,
тогда неизвестное число должно выглядеть, как: x_o x_1 x_2 \ x_3 x_4 x_5 ,
и должно выполняться равенство: x_o x_1 x_2 \ x_3 x_4 x_5 - 533 \ 565 = x_5 x_4 x_3 \ x_2 x_1 x_o ,
или, иначе говоря: x_5 x_4 x_3 \ x_2 x_1 x_o + 533 \ 565 = x_o x_1 x_2 \ x_3 x_4 x_5 ;

Запишем это в столбик:

. \ \ \ x_5 \ \ x_4 \ x_3 \ \ \ x_2 \ x_1 \ x_o \\ + \ \ 5 \ \ \ 3 \ \ \ 3 \ \ \ \ 5 \ \ \ 6 \ \ \ 5 \\ = \ x_o \ \ x_1 \ x_2 \ \ \ x_3 \ x_4 \ x_5

Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:

\left\{\begin{array}{l} x_2 + 5 + e_1 - 10 e_2 = x_3 \ , \\ x_3 + 3 + e_2 - 10 e_3 = x_2 \ ; \end{array}\right

где: e_1 – возможная добавочная единица, уходящая из первого
и приходящая во второй разряд: e_1 \in \{ 0 , 1 \} ,

e_2 – возможная добавочная единица, уходящая из второго
и приходящая в третий разряд: e_2 \in \{ 0 , 1 \} ,

e_3 – возможная добавочная единица,
уходящая из третьего разряда в четвёртый: e_3 \in \{ 0 , 1 \} ,

После сложения уравнений системы, получаем:

8 + e_1 - 9 e_2 - 10 e_3 = 0 ;

Это возможно, только если e_2 = e_1 = 1 и при e_3 = 0 ;

Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.

Тогда получим 6 возможных вариантов разностного числа:
x_5 x_4 0 \ 4 x_1 x_o , \\ x_5 x_4 1 \ 5 x_1 x_o , \\ x_5 x_4 2 \ 6 x_1 x_o , \\ x_5 x_4 3 \ 7 x_1 x_o , \\ x_5 x_4 4 \ 8 x_1 x_o , \\ x_5 x_4 5 \ 9 x_1 x_o .

Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а x_0 \geq 6 , поскольку x_5 \neq 0 , так как с этой цифры начинается разностное число.

Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда x_1 \geq 3 , поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.

Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку x_1 x_o \geq 36 .

Стало быть, дни месяца и месяц
расположены в разрядах: x_5 x_4 x_3 x_2 .

Тогда остаётся три варианта разностного числа: x_5 x_4 \ 04 \ x_1 x_o \ \ , \ \ x_5 x_4 \ 15 x_1 x_o \ \ , \ \ x_5 x_4 \ 26 \ x_1 x_o \ \ .

\left\{\begin{array}{l} x_5 = x_o + 5 - 10 = x_o - 5 \leq 4 \ , \\ x_4 = x_1 + 6 + 1 - 10 = x_1 - 3 \leq 6 \ ; \end{array}\right

отсюда:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

------------------

Рассмотрим первый вариант: x_5 x_4 \ 0 4 \ x_1 x_o ,
здесь 0 4 может играть роль апреля.

Сказано, что сумма всех цифр должна быть кратна трём, тогда:

x_5 + x_4 + x_3 + x_2 + x_1 + x_o = x_5 + x_4 + 0 + 4 + x_4 + 3 + x_5 + 5 = \\\\ = 2 ( x_5 + x_4 + 6 ) = 3 n \ ;

x_5 + x_4 = 3 m ;

Возможны только случаи:

1 + 2 = 3 m ;

1 + 5 = 3 m ;

2 + 1 = 3 m ;

2 + 4 = 3 m ;

3 + 0 = 3 m ;

Учитывая, что:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

получаем разностные числа:

120456 – дата 12/04/56 г.
150486 – дата 15/04/86 г.
210447 – дата 21/04/47 г.
240477 – дата 24/04/77 г.
300438 – дата 24/04/38 г.

------------------

Рассмотрим второй вариант: x_5 x_4 \ 1 5 \ x_1 x_o ,
здесь 15 может играть только роль числа месяца (дня).

Сказано, что сумма всех цифр должна быть кратна трём, тогда:

x_5 + x_4 + x_3 + x_2 + x_1 + x_o = x_5 + x_4 + 1 + 5 + x_4 + 3 + x_5 + 5 = \\\\ = 2 ( x_5 + x_4 + 7 ) = 3 n \ ;

x_5 + x_4 + 1 = 3 m ;

x_5 + x_4 = 3 m + 2 ;

Возможен только один случай:

1 + 1 = 3 m + 2 ;

Учитывая, что:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

получаем разностное число:

111546 – дата 11/15/46 г.

продолжение >>>

Дорогие участники сайта знания.com. у меня появилась проблема с . условие: мы имеем неизвестное чи
Дорогие участники сайта знания.com. у меня появилась проблема с . условие: мы имеем неизвестное чи
gostivdom302

5/ (1/4)⁻¹ * (-8/9)⁰* (1/3)² / 4 = 4/4 * 1 * 1/9 = 1/9

3/ (a+b)* ( x²+x+1)

Объяснение:

2) P = a+b+с = 3x²y + 8x-9y + 4x²y+3x²y+4x = 10x²y+12x-9y

10x²y¹ ⇒ 2+1 = 3 степень

4) V = 1400 м³ = 1,4*10³ м³

n  = 2.7*10⁷ м⁻³

N = nV = 2.7*10⁷ м⁻³ * 1,4*10³ м³ ≈3.8*10¹⁰

6) P = 4a

S = a²

S₁/S₂ = 25

S₁/S₂ = (a₁/a₂)² = 25

a₂ = a₁/5

P₁/P₂ = 4a₁/4a₂ = a₁/a₂  = 5

P₂ = P₁/5

уменьшится в 5 раз

1-го нет. 3 и 5 не понятно что там в условии за знаки

по 5 мне кажется там так:

(1/4)⁻¹ * (-8/9)⁰* (1/3)² / 4 = 4/4 * 1 * 1/9 = 1/9

3-й я думаю там так ax² + bx² + bx + ax + a +b =x²(a+b) + x(a+b) + (a+b) = (a+b)* ( x²+x+1)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

10й класс, голову уже сломала, , найдите все значения а, при каждом из которых любое действительное х является решением неравенства х в квадрате+(3а-1)х+а больше нуля заранее большое : )
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

serzhs869
Aleksei1463
Цветкова
manimen345
irinaphones8
juliaWinter
Iprokopova81
elmira070485
egorov
dlydesertov1
ГегамБукреев830
Антонович937
Kuzina Sergeevna
сузанна_Людмила
Дружинин