Первое число=3; второе число=2.
Объяснение:
Дано два числа. Укажіть рівняння, яке отримаємо, позначивши менше із чисел через x, якщо відомо, що сума цих чисел дорівнює: 5, а їхній добуток дорівнює 6.
х+у=5
х*у=6
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=5-х
х*(5-х)=6
5х-х²=6
-х²+5х-6=0/-1
х²-5х+6=0, квадратное уравнение, ищем корни:
D=b²-4ac = 25-24=1 √D= 1
х₁=(-b-√D)/2a
х₁=(5-1)/2
х₁=4/2=2
х₂=(-b+√D)/2a
х₂=(5+1)/2
х₂=6/2=3
у=5-х
у₁=5-х₁
у₁=5-2=3
у₂=5-х₂
у₂=5-3=2
Получили две пары решений: х₁=2 и х₂=3
у₁=3 у₂=2.
По условию задачи х меньшее число, значит, решением будет первая пара.
Вывод: первое число=3; второе число=2.
Поделитесь своими знаниями, ответьте на вопрос:
Подскажите, как найти d(f) 10 класс. вот, например, у меня f(х)=х^3+3х^2-9х-1 как найти d(f не в этом примере! в каких случаях д от ф будет (-бесконечность, +бесконечность) или (-бесконечность, 0), (0, +бесконечности)
у=(2х-5)/(х+1)⇒х≠-1 D(f)∈(-∞;-1) U (-1;∞)
Если выражение содержит радикал четной степени, то подкоренное выражение может быть только положительным или равняться 0.
f(x)=√(5x-7)⇒5x-7≥0⇒x≥1,4⇒D(f)∈[1,4;∞)
Если выражение содержит логарифмическую функцию,то выражение стоящее под знаком логарифма всегда должно быть только положительным ,основание больше 0 и не равняться 1
f(x)=log(2)(5-x)⇒5-х>0⇒x<5⇒D(f)∈(-∞;5)
f(x)=log(x)2 D(f)∈(0;1) U (1;∞)
Для f(x)=tgx D(f)∈(-π/2+πn;π/2+πn,n∈z)
Для f(x)=ctgx D(f)∈(πn;π+πn,n∈z)
В остальном D(f)∈(-∞;∞)