Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.
T91610933073266
29.02.2020
Смотри, есть у тебя два дробы.К примеру и . Чтобы найти для них общий знаменатель, нужно найти найменьшее общее число которое нацело делилось бы на знаменатель первого и второго дроба, в даном случае знаменатели это 25 и 4. Ну можно взять больший знаменатель умножить на 2 и проверить делится ли это число нацело на первый и другой знаменатель, если не делится ужножаеш на 3 и проверяеш, и так далее. Часто бывает, что один с знаменателей уже делится на себя и на второй знаменатель, тогда это и будет общий знаменатель. Потом оно само будет получаться, потому что будешь знать что на что делится.
Когда в тебя уже есть общий знаменатель, делишь его поочереди на два знаменателя и результат умножаешь на числитель, аналогично и с вторым, далее выполняеш арифметические операции с числителем и резутьтат готов.
Пример: + ; 25* 2= 50 - не делится нацело на 4. 25* 3= 75 - не делится нацело на 4. 25* 4= 100 - подходит. Найменьший общий знаменатель 100 (делится нацело на 25 и 4). Поделили 100 на 25, получилось 4, тогда умножаешь это 4 на числитель (тут 2), аналогично со вторым дробом. Всё берется под общую риску: ; Теперь действия с числителем. = , если можно сократить (то есть и числитель и множитель делится на одинаковое число), то сокращаем.
А что это за варианты?