proplenkusale88
?>

Решите уравнение 2 x - 3/ 3 - 2 = 7 x +4/ 5

Алгебра

Ответы

Larax0819
2х-(3:3)-2=7х+(4:5)
2х- 1 -2=7х+0,8
2х-7х =1+2+08
-5х=3,8
х=3,8:(-5)
х=-0,76
ответ: х=-0,76
Vyacheslavovich Mikhailovich1421
Площадь треугольника полупроизведение сторон и синус угла между ними
S=0,5*a*b*sinx
поскольку это равнобедренный треугольник, то стороны а и b одно и тоже
плюс нам дан угол и площадь
т.е. можно переписать формулу площади уже с известными нам величинами
36 \sqrt{3} =0,5*a*a*sin120\\
36 \sqrt{3}=0,5*a^2* \frac{ \sqrt{3} }{2} \\
144=a^2\\
a=12
значит боковые стороны равны 12
если в этом треугольнике провести высоту(биссектрису(медиану)), то получится два прямоугольных треугольника с углами 60,30,90
половина основания лежит против угла в 60 градусов, используем синус:
sin60= \frac{c}{a}\\
 \frac{ \sqrt{3} }{2} *a=c\\
 \frac{ \sqrt{3} }{2} *12=c\\
c=6 \sqrt{3}
поскольку это половинка основания, то все основание будет в два раза больше
итоговый ответ: стороны равны 12,12,12 \sqrt{3}
emartynova25

\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Объяснение:

Рассмотрим сначала первое неравенство системы.

Начнем с ОДЗ:

log_3^2x+10,\;=\;x0\\log_3x+30,\;x\dfrac{1}{27}\\x0\\x+5\ne0,\;=\;x\ne-5\\=x\in\left(\dfrac{1}{27};+\infty\right)

Продолжим решение:

\dfrac{lg(log_3^2x+1)-lg(log_3x+3)}{x+5}\ge0\\\dfrac{lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)}{x+5}\ge0

1)

lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)=0,\;=\;\dfrac{log_3^2x+1}{log_3x+3}=1\\\\=log_3^2x+1=log_3x+3,\;=\;log_3^2x-log_3x-2=0

Замена: t=log_3x.

t^2-t-2=0\\t^2+t-2t-2=0\\t(t+1)-2(t+1)=0\\(t+1)(t-2)=0\\t=-1\\t=2

Обратная замена:

log_3x=-1\\x=\dfrac{1}{3}\\\\log_3x=2\\x=9

С учетом ОДЗ оба корня подходят.

2)

x+5\ne0\\x\ne-5

С учетом ОДЗ получим, что решение неравенства:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)

Теперь перейдем ко второму неравенству системы:

Понятно, что сначала нужно написать ОДЗ.

0.5x0,\;=\;x0\\(0.5x)^{6^x}0,\;=\;x0\\=x0

Продолжим решение:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Заметим, что данное неравенство хорошо раскладывается на множители:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Решим неравенство по методу интервалов.

1)

\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}

2)

36-6^x-log_60.5x=0\\log_60.5x=-6^x+36

Введем функции f(x)=log_60.5x и g(x)=-6^x+36. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, log_61=-36+36,\;=\;0=0, верно. Так, мы решили это уравнение, получив, что его корень x=2.

Тогда решение неравенства с учетом ОДЗ:

x\in\left(\dfrac{1}{4};\;2\right)

Итого имеем:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)

Найдем пересечение:

x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Задание выполнено!

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение 2 x - 3/ 3 - 2 = 7 x +4/ 5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

smook0695
ViktorovnaKraeva634
tokarevaiv
Li-111
Roman913
annashaykhattarova1
Газинурович
yamalsva45
admin8808
Allahverdi_Мария475
prianik6
bereza81
pucha5261
AnzhelikaSlabii1705
delena6467