В линейной функции любому значению аргумента всегда соответствует однозначное значение функции.
Точки можно брать любые. Для построения графика надо брать в пределах размера бумаги, на которой строится график,
Часто принимают х = 0, тогда у этой точки легко находится.
Например, y = 3 - 6*0 = 3.
И вторую точку по х можно взять, чтобы удобно было определить значение функции.
Например, х = 2, у = 3 - 6*2 = 3 - 12 = -9.
Эта точка далековато расположена, можно взять х = 1,
Тогда у = 3 - 6*1 = 3 - 6 = -3.
Иногда функцию приравнивают 0 и находят х.
0 = 3 - 6*х,
6х = 3,
х = 3/6 = 1/2.
2b⁵-16b² = 2b²(b³-8) = 2b²(b-2)(b²+2b+4)
x²-4xy+4y²+2x-4y = (x-2y)² +2(x-2y) = (x-2y)(x-2y+2)
3a-81a⁴ = 3a(1-27a³) = 3a(1-3a)(1+3a+9a²)
9x²+6xy+y²-6x-2y = (3x+y)² - 2(3x+y) = (3x+y)(3x+y-2)
28x³+3x²+3x+1 = 27х³ + (х+1)³=(3х+х+1)(9х²-3х²-3х+х²+2х+1)=(4х+1)(7х²-х+1)
x²+4x-y²-2x+3 = тут невозможно разложить
2x³-3x²+3x-1 = х³ + (х-1)³ = (х+х-1)(х²-х²+х+х²-2х+1) = (2х-1)(х²-х+1)
x²+2x-y²-6y-8 = (х²+2х+1) - (у²+6у+9) = (х+1)² - (у+3)² = (х-у-2)(х+у+4)
x(x+3)(x-4)=0
неравенство будет верно, если хотя бы один из множителей будет равен 0, а множители у тебя : х, х+3, х-4.
вот ты каждый множитель приравниваешь к 0, и находишь х.
х=0
или
х+3=0
х=-3
или х-4=0
х=4
у тебя получилось 3 значения х, при которых это неравенство будет выполнено: 0, -3, 4.
теорема.средняя линия трапеции параллельна основаниям и равна их полусумме.
пусть abcd – данная трапеция.
ef – средняя линия трапеции. проведём через вершину b и точку f прямую. пусть эта прямая пересекает прямую ad в некоторой точке g. δ cfb = δ fdg по второму признаку равенства треугольников (cf = fd, по построению, ∠ bcf = ∠ пва, как внутренние накрест лежащие при параллельных прямых вс и dg и секущей cd, ∠ cfb = ∠ dfg, как вертикальные).
значит bc = dg и bf = fg. следовательно, средняя линия трапеции ef является средней линией треугольника abg. по свойству средней линии треугольника ef || ad, а
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Велосипедист проехал 15 км с определенной скоростью и еще 6 км со скоростью на 3 км/ч меньше первоначальной. на весь путь он затратил 1, 5ч. найдите скорости велосипедиста, с которыми он ехал.
15/x + 6/(x-3) = 1.5
Умножим обе части на 2x(x-3)
30(x-3) + 12x = 3x(x-3)
10(x-3) + 4x = x(x-3)
x^2 - 3x - 10x + 30 - 4x = 0
x^2 - 17x + 30 = 0
(x - 2)(x - 15) = 0
Получим два корня:
x1 = 2 км/ч
x2 = 15 км/ч
Первый корень не подходит, так как величина x1 - 3 км/ч= -1 км/ч < 0.
Второй подходит: x2 - 3 км/ч = 12 км/ч
ответ: 15 км/ч, 12 км/ч.