Решение: Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2. Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным. Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно. Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: И положительный: (рис. 2) Далее, снова отрицательный: И положительный: Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно. ответ: -1
utburt
09.09.2020
Решение: Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2. Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным. Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно. Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: И положительный: (рис. 2) Далее, снова отрицательный: И положительный: Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно. ответ: -1
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Нужно решить, a)lim 2x³ + x x-> 0 b)lim 3x³ - 11x + 6 x-> 3 в) lim x в 4 - 25 / x² - 5 x-> корень из 5
x→0
б) lim(3x³ -11x +6 ) = = 0
x→3
в) lim (x⁴ -25) /(х² - 5) = ?
х→√5
х⁴ - 25 = (х² - 5)(х² + 5)
Дробь можно сократить, пример примет вид:
lim (x² + 5) = 10
х→√5