Sn = (2*a1+(n-1)*d)*n) / 2
a1 - первый член прогрессии (у нас это 5)
d - разность прогрессии
n - количество членов, для которых мы считаем сумму.
Итак, поехали. Сначала найдем d. Для этого нужно поделить соседние члены прогрессии.
d = -10 / 5 = -2
Теперь подставляем известные нам данные в формулу, посчитаем что сможем и выразим n.
-425 = ((2*5+(n-1)*(-2))*n)/2
-425 = (10 + (-2*n+2)*n)/2
-425 = (10 -2*n^2 + 2*n)/2
- 2n^2 + 2n + 10 = -850
-2n^2+2n+10+850=0
-2n^2+2n+860 = 0
Вот и получилось у нас квадратное уравнение ;)
разделю его на - 2, чтобы проще было решать.
n^2-n-430 = 0
Теперь считаем дискриминант
D= b^2 - 4ac
a - коэффициент перед х в квадрате
b - коэффициент перед х
с - число без переменной.
D= 1 + 4*430= 1721
n = (-b2+-корень из D)/2
n1 = (1+корень из 1721)/2
n2 = (1- корень из 1721)/2
к сожалению я либо где-то обсчиталась, либо надо извлечь из корня приблизительное значение, т.к. оно ну никак не извлекается. Ошибку найти не могу, но принцип решения ясен? =)
Потом в итоге получется 2 разных n. В ответ пиши только положительное, т.к. отрицательных n не бывает.
1)2((8+x)+x)=20
8+2x=20:2
8+2х=10
2х=10-8
2х=2
х=2:2
х=1-ширина
8+х=8+1=9 - длина
2)2х+х=441
3х=441
х=441:3
х=147-второе число
3х=294-первое число
3)х+у+х-у=140+14
2х=154
х=154:2
х=77-первое число
77+у=140
у=140-77
у=63-второе число
4) х+(х+1)+(х+2)=201
3х+3=201
3х=201-3
3х=198
х= 198:3
х=66
х+1=67
х+2=68
Это числа 66,67 и 68
Поделитесь своими знаниями, ответьте на вопрос:
1.укажите допустимые значения переменной в выражении : 1 2x^2-8 2). 3/x-2 3). x^2/x+3 2. разложите на множители : 1). 20а^3-60а^2+45а !
2) x≠2
3) x≠ -3
2.
1) 20a³ -60a²+45a = 5a(4a²-12a+9)=5a(2a-3)²