titov-es3095
?>

Вдвух корзинах было 24 кг груш. когда из первой корзины переложили во вторую 3/7 массы содержащейся в ней в ней груш томаса грушу второй корзине стало в два раза больше массы груш оставшихся в первой корзине. сколько килограммов груш было в каждой корзине сначала?

Алгебра

Ответы

marat7
В 1-ой корзине было х груш. Тогда х-3/7х осталось в первой корзине, а во второй (х-3/7х)*2 . Составим уравнение (х-3/7х=4/7х)

4/7х+4/7х *2 = 24
4/7x +8/7x =24
12/7x = 24
x = 24 * 7/12
x=14 (кг было в первой корзине
2)24-14=10кг во 2 корзине

priexali

ответ:\left[-5;-\dfrac{7+2\sqrt{7}}{3}\right)\cup\left(-\dfrac{7+2\sqrt{7}}{3};-\dfrac{7}{2}\right)\cup\left(-1;-\dfrac{1}{2}\right]\cup\left\{\dfrac{-11+4\sqrt{7}}{9};\dfrac{7-2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right\}Объяснение:

Исходная дробь равносильна следующей системе (числитель равен нулю, знаменатель не равен нулю + ОДЗ):

\begin{cases}((|x|+|y|)^2-8(|x|+|y|)+15)(x^2+y^2-16)=0,\\ \sqrt{2x+y-1}\neq 0,\\ 2x+y-1\geq 0 \end{cases}

В первом уравнении произведение равно нулю, когда хотя бы один из множителей равен нулю. Второе неравенство равносильно тому, что подкоренное выражение не равно нулю. Значит, вместе второе и третье образуют неравенство 2x + y - 1 > 0 ⇔ y > -2x + 1. Вернёмся к первому уравнению:

\displaystyle\left [ {{(|x|+|y|)^2-8(|x|+|y|)+15=0,} \atop {x^2+y^2-16=0}} \right.

В первом уравнении сделаем замену |x| + |y| = t.

t^2-8t+15=0

По теореме Виета \displaystyle\left \{ {{t_1+t_2=8,} \atop {t_1t_2=15}} \right. \Rightarrow t_1=3,t_2=5

Получаем \left[\begin{gathered}|x|+|y|=3,\\|x|+|y|=5,\\ x^2+y^2=16\end{gathered}\right.

Третье уравнение — уравнение окружности с центром (0; 0) и радиусом 4. Первые два уравнения — уравнения квадратов с центром в точке (0; 0), наклонённых на 45° и диагоналями 6 и 10: действительно, если раскрыть модуль y, а всё без y перенести в правую сторону, то при y ≥ 0 y = -|x| + 3, при y < 0 y = |x| - 3. Аналогично с |x| + |y| = 5.

Учтём ограничение y > -2x + 1: нам подохдят все y, что выше прямой -2x + 1. Всё вместе это выглядит, как на первой картинке. Теперь нужно обрезать всё, что не попадает в синюю область (см. вторую картинку).

Для выполнения второго задания вычислим точки пересечения квадратов и окружности с прямой y = -2x + 1, а также точки пересечения окружности и большого квадрата.

|x|+|1-2x|=3

При x < 0: -x+1-2x=3\\-3x=2\\x=-\dfrac{2}{3}, y=-2\cdot\left(-\dfrac{2}{3}\right)+1=\dfrac{7}{3}

При 0 ≤ x < 0,5: x+1-2x=3\\x=-2 — не подходит

При x ≥ 0,5: x+2x-1=3\\3x=4\\x=\dfrac{4}{3},y=-2\cdot \dfrac{4}{3}+1=-\dfrac{5}{3}

|x|+|1-2x|=5

При x < 0: -x+1-2x=5\\-3x=4\\x=-\dfrac{4}{3}, y=-2\cdot\left(-\dfrac{4}{3}\right)+1=\dfrac{11}{3}

При 0 ≤ x < 0,5: x+1-2x=5\\x=-4 — не подходит

При x ≥ 0,5: x+2x-1=5\\3x=6\\x=2,y=-2\cdot 2+1=-3

x^2+(1-2x)^2=16\\x^2+1-4x+4x^2-16=0\\5x^2-4x-15=0\\D_{/4}=2^2+5\cdot 15=79\\x_1=\dfrac{2+\sqrt{79}}{5},y_1=-2\cdot\dfrac{2+\sqrt{79}}{5}+1=\dfrac{1-2\sqrt{79}}{5}\\x_2=\dfrac{2-\sqrt{79}}{5},y_2=-2\cdot\dfrac{2-\sqrt{79}}{5}+1=\dfrac{1+2\sqrt{79}}{5}

\displaystyle\left \{ {{|x|+|y|=5,} \atop {x^2+y^2=16}} \right.\left \{ {{|x|+\sqrt{16-x^2}=5,} \atop {|y|=\sqrt{16-x^2}}} \right.

Решим первое уравнение:

\sqrt{16-x^2}=5-|x|\\16-x^2=25-10|x|+x^2\\2x^2-10|x|+9=0\\0\leq x\leq 5: 2x^2-10x+9=0\\D_{/4}=5^2-2\cdot 9=7\\x_1=\dfrac{5-\sqrt{7}}{2},y_1=\pm\sqrt{16-\left(\dfrac{5-\sqrt{7}}{2}\right)^2}=\pm\sqrt{\dfrac{64-25+10\sqrt{7}-7}{4}}=\\=\pm\dfrac{\sqrt{25+10\sqrt{7}+7}}{2}=\pm\dfrac{5+\sqrt{7}}{2}\\x_2=\dfrac{5+\sqrt{7}}{2},y_2=\pm\dfrac{5-\sqrt{7}}{2}

-5\leq x

Прямая y = px - 1 — прямая, проходящая через точку (0; -1). Действительно, если подставить x = 0, вне зависимости от параметра p при данном x y = -1. p регулирует наклон прямой. Будем вращать прямую около точки (0; -1) и отмечать промежутки (красным), где прямая "начинает" и "заканчивает" иметь две общие точки (см. третью картинку).

На рисунке отмечены все промежутки и частные случаи, когда прямая имеет две общие точки. Выразим p через x и y:

y+1=px\\p=\dfrac{y+1}{x}

Для \left(-\dfrac{2}{3};\dfrac{7}{3}\right)\ p=\dfrac{\frac{7}{3}+1}{-\frac{2}{3}}=-5

Для \left(-\dfrac{5-\sqrt{7}}{2};\dfrac{5+\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5+\sqrt{7}}{2}+1}{-\frac{5-\sqrt{7}}{2}}=-\dfrac{7+2\sqrt{7}}{3}

Для \left(-\dfrac{4}{3};\dfrac{11}{3}\right)\ p=\dfrac{\frac{11}{3}+1}{-\frac{4}{3}}=-\dfrac{7}{2}

Для \left(2;-3\right)\ p=\dfrac{-3+1}{2}=-1

Для \left(\dfrac{4}{3};-\dfrac{5}{3}\right)\ p=\dfrac{-\frac{5}{3}+1}{\frac{4}{3}}=-\dfrac{1}{2}

Для \left(\dfrac{5+\sqrt{7}}{2};-\dfrac{5-\sqrt{7}}{2}\right)\ p=\dfrac{-\frac{5-\sqrt{7}}{2}+1}{\frac{5+\sqrt{7}}{2}}=\dfrac{-11+4\sqrt{7}}{9}

Для \left(\dfrac{5+\sqrt{7}}{2};\dfrac{5-\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5-\sqrt{7}}{2}+1}{\frac{5+\sqrt{7}}{2}}=\dfrac{7-2\sqrt{7}}{3}

Для \left(\dfrac{5-\sqrt{7}}{2};\dfrac{5+\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5+\sqrt{7}}{2}+1}{\frac{5-\sqrt{7}}{2}}=\dfrac{7+2\sqrt{7}}{3}

Итого

p\in\left[-5;-\dfrac{7+2\sqrt{7}}{3}\right)\cup\left(-\dfrac{7+2\sqrt{7}}{3};-\dfrac{7}{2}\right)\cup\left(-1;-\dfrac{1}{2}\right]\cup\\\cup\left\{\dfrac{-11+4\sqrt{7}}{9};\dfrac{7-2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right\}


Решите подробно и с вычислениями : не просто график и второе задание
Решите подробно и с вычислениями : не просто график и второе задание
Решите подробно и с вычислениями : не просто график и второе задание
lionmost6979
Одинаковая пропускная означает, что в единицу времени проходит тот же же поток воды. 
Иными словами совокупная площадь сечений двух исходных труб должна быть равна площади сечения новой трубы. 
Трубы обычно делают круглыми, значит для расчетов площади сечения мы можем воспользоваться формулами нахождения площади круга. 
2*С1 = С2, где С1 - площадь сечения одной из старых труб (они одинаковы, т.к. диаметр одинаков), С2 - площадь сечения новой трубы. 
С1 = Пи*Д1^2 / 4, 
С2 = Пи*Д2^2 / 4, где Д1 - диаметр одной из старых труб, Д2 - диаметр новой трубы. 
2* Пи*Д1^2 / 4 = Пи*Д2^2 / 4. 
2*Д1^2 = Д2^2, 
Д2 = (2*Д1^2)^1/2. 
Д2 = 2^1/2 * Д1. 
(Диаметр новой трубы равен диаметру старой трубы, умноженному на квадратный корень из двух). 
Значит, при условии, что Д1 = 50, 
Д2 = 2^1/2 * 50 = [приближенно равно] = 1,414*50 = 70,7.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вдвух корзинах было 24 кг груш. когда из первой корзины переложили во вторую 3/7 массы содержащейся в ней в ней груш томаса грушу второй корзине стало в два раза больше массы груш оставшихся в первой корзине. сколько килограммов груш было в каждой корзине сначала?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Лилин1079
озерская_Мария1234
azarov8906
козлов
avdeevau807
Sosovna Dmitrievich22
fafina12586
elizabetmaslova3
Drugov_Vladimirovna
PetrovnaTsukanov
Скворцов
batalerka391
Оксана
frame45
Vladislav98