Решение системы уравнений х=7/8
у=9/40
Объяснение:
Решить систему уравнений методом алгебраического сложения:
5y-7x= -5
5y+x=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -1:
-5у+7х=5
5y+x=2
Складываем уравнения:
-5у+5у+7х+х=5+2
8х=7
х=7/8
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
5y+x=2
5у=2-х
5у=2-7/8
5у=1 и 1/8
у=(1 и 1/8)/5
у=9/40
Решение системы уравнений х=7/8
у=9/40
Решение системы уравнений х= -2
у= -4
Объяснение:
Решить систему уравнений сложения.
x−y=2
x+y= −6
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, есть у с одинаковыми коэффициентами и противоположными знаками.
Складываем уравнения:
х+х+у-у=2-6
2х= -4
х= -2
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
x+y= −6
у= -6-х
у= -6 +2
у= -4
Решение системы уравнений х= -2
у= -4
Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенство: а+3< 2а 5-b< 6b+4 (подробно )