1) -2 5 -7 1 0 0 2) с непосредственной подстановкой я думаю все ясно. а выполнить проверку с схемы горнера можно найдя остаток от деления исходного многочлена на (x-x0) (ведь по теореме безу и будет значением многочлена в точке x0). схему горнера тут неудобно оформлять, поэтому давай сам как нибудь. 3) в соответствии с теоремой о рациональных корнях многочлена с целыми коффициентами, целые корни должны быть делителями свободного члена 3. делители тройки: 1, -1, 3, -3. убеждаемся что только числа 1 и 3 являются корнями. ответ: x=1, x=3 4) сначала поищем целые корни. проверим числа 1, -1, 3, -3, 9, -9. 1 - корень, поэтому делим исходный многочлен на (x-1) и получаем 5x^2+14x+9. теперь решаем квадратное уравнение находим еще два корня x=-9/5 и x=-1 таким образом 5x^3+9x^2-5x-9=(x-1)(x+1)(5x+9)