а)
Проверим, может ли равняться нулю. Для этого подставим 0 в уравнение вместо косинуса:
Получили, что при ,
, но не бывает такого угла, косинус и синус которого одновременно обнуляются, поэтому
, следовательно мы можем разделить наше уравнение на косинус:
Получили квадратное уравнение относительно такнегса. За теоремой Виета находим корни данного уравнения:
б) Необходимо отобрать корни уравнения на отрезке [-1;1]. Для этого воспользуемся двойным неравенством:
Для аппроксимации возьмём π ≈ 3:
Учитывая, что n – целое число, на промежутке [-1;1], оно может принимать значения: -1, 0. Тогда корни на данном промежутке: .
Отбираем второй корень по аналогии с первым:
Мы знаем что функция arctg(x) довольно быстро изменяется в пределах от до
, поэтому для больших х
. Тогда
Сразу аппроксимируем π ≈ 3:
Для целых k в данный отрезок [-1;1] попадает только два значения k = -1 и k = 0. Тогда корни .
а) ;
б) .
1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
Поделитесь своими знаниями, ответьте на вопрос:
Решите : -sin(п/4+3x)=1/2 вроде по формуле : )