Белов_Лукина1339
?>

Решите : -sin(п/4+3x)=1/2 вроде по формуле : )

Алгебра

Ответы

Yelizaveta1848
У 3швовоаоаошвшщащвщв7в7
sadkofamily61

а)

\sin {}^{2} (3x) - 2 \sin(6x) + 3 \cos {}^{2} (3x) = 0 \\ \sin {}^{2} (3x) - 2 \times 2 \sin(3x) \cos(3x) + 3 \cos {}^{2} (3x) = 0 \\ \sin {}^{2} (3x) - 4 \sin(3x) \cos(3x) + 3 \cos {}^{2} (3x) = 0

Проверим, может ли \cos(3x) равняться нулю. Для этого подставим 0 в уравнение вместо косинуса:

\sin {}^{2} (3x) - 4 \sin(3x) \times 0 + 3 \times {0}^{2} = 0 \\ \sin {}^{2} (3x) = 0 \\ \sin(3x) = 0

Получили, что при \cos(3x)=0, \sin(3x)=0, но не бывает такого угла, косинус и синус которого одновременно обнуляются, поэтому \cos(3x)≠0, следовательно мы можем разделить наше уравнение на косинус:

\frac{ \sin {}^{2} (3x) }{ \cos {}^{2} (3x) } - 4 \frac{ \sin(3x) \cos(3x) }{ \cos {}^{2} (3x) } + 3 \frac{ \cos {}^{2} (3x) }{ \cos {}^{2} (3x) } = 0 \\ \tan {}^{2} (3x) - 4 \tan(x) + 3 = 0

Получили квадратное уравнение относительно такнегса. За теоремой Виета находим корни данного уравнения:

\tan(3x) = 1 \\ \tan(3x) = 3 \\ 3x = \frac{\pi}{4} + \pi n \\ 3x = \arctg(3) + \pi k \\ x = \frac{\pi}{12} + \frac{\pi}{3} n \\ x = \frac{1}{3} \arctg(3) + \frac{\pi}{3} k, \: n,k \in \mathbb Z

б) Необходимо отобрать корни уравнения на отрезке [-1;1]. Для этого воспользуемся двойным неравенством:

- 1 \leqslant \frac{\pi}{12} + \frac{\pi}{3} n \leqslant 1 \\ - 1 - \frac{\pi}{12} \leqslant \frac{\pi}{3}n \leqslant 1 - \frac{\pi}{12} \\ - \frac{\pi + 12}{12} \leqslant \frac{\pi}{3} n \leqslant \frac{12 - \pi}{12} \\ - \frac{\pi + 12}{4} \leqslant \pi n \leqslant \frac{12 - \pi}{4} \\ - \frac{\pi + 12}{4\pi} \leqslant n \leqslant \frac{12 - \pi}{4\pi}

Для аппроксимации возьмём π ≈ 3:

- \frac{3 + 12}{4 \times 3} \leqslant n \leqslant \frac{12 - 3}{4 \times 3} \\ - \frac{5}{4} \leqslant n \leqslant \frac{3}{4} \\n \in[ - 1.25;0.75]

Учитывая, что n – целое число, на промежутке [-1;1], оно может принимать значения: -1, 0. Тогда корни на данном промежутке: x_{1}=\frac{\pi}{12}-\frac{\pi}{3}=-\frac{\pi}{4},\\ x_{2}=\frac{\pi}{12}+\frac{\pi}{3} \times 0 = \frac{\pi}{12}.

Отбираем второй корень по аналогии с первым:

- 1 \leqslant \frac{1}{3} \arctg(3) + \frac{\pi}{3} k \leqslant 1

Мы знаем что функция arctg(x) довольно быстро изменяется в пределах от -\frac{\pi}{2} до \frac{\pi}{2}, поэтому для больших х \arctg(x)≈\frac{\pi}{2}. Тогда

- 1 \leqslant \frac{1}{3} \times \frac{\pi}{2} + \frac{\pi}{3} k \leqslant 1 \\ - 1 \leqslant \frac{\pi}{6} + \frac{\pi}{3} k \leqslant 1

Сразу аппроксимируем π ≈ 3:

- 1 \leqslant \frac{3}{6} + \frac{1}{3}k \leqslant 1 \\ - 1 \leqslant \frac{1}{2} +\frac{1}{3} k \leqslant 1 \\ - 1.5 \leqslant \frac{1}{3}k \leqslant 0.5 \\ - 0.5 \leqslant k \leqslant \frac{1}{6} \\ - 1.5 \leqslant k \leqslant 0.5

Для целых k в данный отрезок [-1;1] попадает только два значения k = -1 и k = 0. Тогда корни x_{3} = \frac{1}{3} \arctg(3)+\pi \times 0 = \frac{1}{3} \arctg(3) \\ x_{4} = \frac{1}{3} \arctg(3)+\frac{\pi}{3}\times (-1) = \frac{1}{3} \arctg(3) - \frac{\pi}{3}.

а) x = \frac{\pi}{12} + \frac{\pi}{3} n, \: x = \frac{1}{3} \arctg(3) + \frac{\pi}{3} k, \: n,k \in \mathbb Z;

б) -\frac{\pi}{4}, \: \frac{\pi}{12}, \: \frac{1}{3} \arctg(3), \: \frac{1}{3} \arctg(3) - \frac{\pi}{3}.

Viktoriya

1. Сложим системы:

2x = 6

x = 3

Из первого уравнение y=2-x = 3-2 = -1

x=3 y=-1

2. Сложим системы

9x = 18

x = 2

Из второго 4y=8-3x=8-6=2   y=2/4=0,5

x=2  y=0,5  (2; 0,5)

3. Вычтем из первого уравнения второе

  4x - 4x - 7y + 5y = 30 - 90

  -2y = -60

   y= 30

Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60

x=60 y=30  (60;30)

4. Вычтем второе из первого

     3y - 5y = 66 - 22

     -2y = 44

       y = -22

    Из первого 12x = 66 - 3y = 66 + 66 = 132  x=11

   x=11 y=-22    x+y=11-22= -11

5.  Сложим уравнения

    y-4y = 12

    -3y = 12       y=-4

   Из второго 2x=8+4y=8-16=-8    x=-4

  x= -4  y=-4     x/y = 1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите : -sin(п/4+3x)=1/2 вроде по формуле : )
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

DJXEz80
oooviktoria17
tat122
Грудинин604
sergeystepanov231
Тимур
arturo95
Андреевна-Арзуманян1109
Konstantinovich alekseevna993
Olesyamilenina8
Andrei
thecoffeeowl
prianik6
Aleksei1968
Alekseevich1012