lobanosky162
?>

Написать уравнение прямой, параллельной прямой y=0, 75x+11 и проходящей через точку (8; 1

Алгебра

Ответы

most315
Привет! 
Чтобы наши графики прямых были параллельны друг другу, то их коэффициенты должны быть одинаковы, в противном же случае, если коэффициенты будут разными, то наши графики пересекутся. 
Но, нам еще нужно учесть, что от нас требует прохождения прямой через точку, координаты которой х=8, у=1. 
Вот само уравнение, а ниже график.  
y=0.75x-5

Написать уравнение прямой, параллельной прямой y=0,75x+11 и проходящей через точку (8; 1).
serov555zaq5
Решаем методом интервалов:
1) x^2 - 4x > 0
 x(х - 4) > 0, отсюда х=0 или х=4,отмечаем на координатной прямой, расставляем знаки, получается + - +, выбираем больше, ответ (-бесконечность;0) U (4;+бесконечность)
2)x^2 + 4x < 0
x(х + 4) < 0, отсюда х=0 или х=-4,отмечаем на прямой,знаки будут + - +, выбираем меньше, ответ от (-4;0)
3)4x^2 - 64 < 0, делим все на 4, получаем
x^2 - 16 < 0, расскладываем как разность квадратов,
(х-4)(х+4) < 0,х=4 или х=-4, отмечаем на прямой ,расставляем знаки + - +,выбираем том, где минус, ответ  (-4;4)
gardenstreet5

№1.

\tt \displaystyle g(x)=\frac{x-5}{x+3}

\displaystyle g(-2)=\frac{-2-5}{-2+3} =\frac{-7}1 =-7\\ \\ g(2)=\frac{2-5}{2+3} =\frac{-3}{5} ^{(2}=\frac{-6}{10} =-0,\! 6

№2.

\tt \displaystyle f(x)=\frac1{-3x+2}

\displaystyle f(x)=1\Rightarrow \frac1{-3x+2}=1\; \; |\cdot (-3x+2)\ne 0\\ \\ \begin{Bmatrix}1=-3x+2\\ -3x+2\ne 0\end{matrix} \quad \begin{Bmatrix}3x=1\ne 2\\ 3x\ne 2\qquad \end{matrix} \\ \\ x=\frac13

ответ: \tt \displaystyle x=\frac13

№3.

а)

f(x) = 19-2x;   D(f) = (-∞;+∞)

б)

g(x) = x+1;   D(g) = (-∞;+∞)

в)

y(x) = √x;   D(y) = [0;+∞)

г)

y = x²-4;   D(y) = (-∞;+∞)

Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).

№4.

а)

y = 37x+1;   E(y)=(-∞;+∞)

б)

y = -23;   E(y) = -23

в)

y = x;   E(y) = (-∞;+∞)

г)

y = |x|;   E(y) = [0;+∞)

Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).

ответы на вопросы:

1. Графиком квадратичной функции является парабола.

2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: \tt \displaystyle x_0 =\frac{-b}{2a}, ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.

3. Направление ветвей зависит от старшего коэффициента.

Если a<0, то ветви направлены вниз;

Если a>0, то ветви направлены вверх.

4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет \tt \displaystyle x =\frac{-b}{2a}

5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.

Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).

Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.


Решите по , 9 класс. большое! ) номер 1. найдите g (-2) b g (2), если g (x)= x-5\x+3 номер 2. найдит

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Написать уравнение прямой, параллельной прямой y=0, 75x+11 и проходящей через точку (8; 1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Кожуховский398
Ivanova.i.bkrasheninnikov
pk199888
mail66
milleniumwood633
Alesander-Isaev684
Butsan-Bagramyan
ukkavtodor6
Ladiga_Evgenii886
Vasilevskii
miss1380
marysya60
kolyabelousow4059
galereyaas1568
Immortal3331