serov555zaq5
?>

1) с³-2с²+3с-4-(с³-3с²-5), якщо с=2 2)4х²³-4х²-5), якщо х=-3 3) 2р-(1-р²-р³+р²-р³), якщо р=⅔

Алгебра

Ответы

Zelinskaya-Andrei
1) с=2;
8-8+6-4-8+12+5=-11
2) х=3
36+18+36+5=95
3)р=2|3
4\3-1+4\9+8\27=29\27 -первая скобка
4\3+4\9-8\27=56\27- вторая скобка
29\27-56\27=-27\27=-1
tany821
1) (x+1)(x-4) \leq 0
(x+1)(x-4)=0
x=-1
x=4
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)

2) \frac{x+6}{x-10} \geq 0
x=-6, x \neq 10
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)

3) подкоренное выражение должно быть неотрицательным:
-3x^{2}+x+4 \geq 0
3x^{2}-x-4 \leq 0
3x^{2}-x-4=0, D=1+4*4*3=490
x_{1}= \frac{1+7}{6}=\frac{8}{6}=\frac{4}{3}
x_{2}= \frac{1-7}{6}=-1
-1≤x≤4/3
Sonyamaslo6
1) (x+1)(x-4) \leq 0
(x+1)(x-4)=0
x=-1
x=4
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)

2) \frac{x+6}{x-10} \geq 0
x=-6, x \neq 10
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)

3) подкоренное выражение должно быть неотрицательным:
-3x^{2}+x+4 \geq 0
3x^{2}-x-4 \leq 0
3x^{2}-x-4=0, D=1+4*4*3=490
x_{1}= \frac{1+7}{6}=\frac{8}{6}=\frac{4}{3}
x_{2}= \frac{1-7}{6}=-1
-1≤x≤4/3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1) с³-2с²+3с-4-(с³-3с²-5), якщо с=2 2)4х²³-4х²-5), якщо х=-3 3) 2р-(1-р²-р³+р²-р³), якщо р=⅔
Ваше имя (никнейм)*
Email*
Комментарий*