#1. |2x-3|=3-2x, если х<3/2; |2x-3|=2x-3, если х≥3/2;
|x-2|=2-x, если х<2; |x-2|=-2x, если х≥2;
|x-6|=6-x, если х<6; |x-6|=x-6, если х≥6.
Получаем три случая:
1) на множестве (-∞;3/2)U[2;6) получаем неравенство
(2х-3)(х-2)≥(6-х)+2
2х²-3х-4х+6-6+х-2≥0
2х²-6х-2≥0
х²-3х-1≥0
D=9+4=13
C учётом (-∞;3/2)U[2;6) получим
2) на интервале 1,5≤х<2 получим неравенство
(2х-3)(2-х)≥(6-х)+2
4х-6-2х²+3х-6+х-2≥0
-2х²+8х-14≥0
х²-4х+7≤0
D=16-28<0
решений нет
3) на интервале х≥6 получим неравенство
(2х-3)(х-2)≥(х-6)+2
2х²-3х-4х+6+6-х-2≥0
2х²-8х+10≥0
х²-4х+5≥0
D=16-20<0
решений нет
ответ:
#2. Пусть ∆АВС-прямоугольный треугольник с гипотенузой АВ, катетами АС и ВС.
По условию ВС+АВ=11, tg В = 3/4.
По определению тангенса острого угла прямоугольного треугольника
tg B=AC/BC=3/4 => 3BC=4AC =>
По теореме Пифагора АВ² = АС² + ВС²
Пусть ВС=х, тогда АВ=11-х, АС=3х/4
ответ:
Пусть X км/час - скорость течения реки.
Тогда (25 + X) км/час - скорость катера по течению.
(25 - X) км/час - скорость катера против течения.
2. Катер км против течения реки.
Тогда время в пути составило 20 / (25 - X) часов.
Катер км по течению.
Время равно 30 / (25 + X) часов.
По условию задачи всего катер затратил 2 часа.
20 / (25 - X) + 30 / (25 + X) = 2.
20 * (25 + X) + 30 * (25 - X) = 2 * (25 - X) * (25 + X).
500 + 750 - 10 * X = 2 * (625 - X * X).
2 * X * X - 10 * X = 0.
X = 0 или 2 * X = 10.
X = 0 или X = 5 - скорость течения.
У реки всегда есть течение, поэтому X = 0 не подходит.
ответ: Скорость течения реки равна 5 км/час.
Поделитесь своими знаниями, ответьте на вопрос:
Сумма цифр двузначного числа равна 9. число, записанное теми же цифрами, но в обратном порядке, больше исходного числа на 27. найти это число.