Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. а(0; 0) х2=-4 у2=-157. в(-4; -157) на участке от -2 до 0: производная больше 0, функция возрастает. на участке от 0 до 2: производная меньше 0, функция убывает. максимум при х=0 и у=3 минимум либо при х=-2, либо при х=2. подстановкой убеждаемся: минимум при х=-2, он равен -29. этот способ позволяет построить график, который указан выше, но построение графика при этом аналитическом способе не необходимо.
Ivanovich-A.V
11.02.2023
1.область определения функции: x∈r (функция определена на x∈(-∞; +∞).2.четность/нечетность: f(-x)=)³+3(-x)²-4=x³+3x²-4≠f(x)≠-f(x) - функция ни четная, ни нечетная.3.непрерывность: функция непрерывна на всей области определения.4.поведение функции при x→+-∞: при x→-∞, f(x)→+∞; при x→+∞, f(x)→-∞.5.производная функции: f'(x)=(-x³+3x²-4)'=-(x³)'+3*(x²)'-4'=-3x²+3*2x-0=-3x²+6x.6. экстремумы функции: f'(x)=0, -3x²+6x=0 ⇒ x²-2x=0 ⇒ x(x-2)=0 ⇒ x=0 и x=2.7.монотонность (промежутки возрастания и убывания) функции: при x∈(-∞; 0], f'(x)< 0 - функция убывает, при x∈[0; 2], f'(x)> 0 - функция возрастает, при x∈[2; +∞), f'(x)< 0 - функция убывает. следовательно x=0 - точка минимума, x=2 - точка максимума.8.пересечение графика функции с осями координат: с осью абсцисс, f(x)=0 ⇒ -x³+3x²-4=0 ⇒ x=-1 и x=2, получим точки (-1; 0) и (2; 0); с осью ординат, x=0, f(x)=-4, получим точку (0; -4). подробнее - на -
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите абсцисс точек пересечения графиков функций