E(y) -- это область значений функции.
В данном примере проще оценить выражение(нужно понять, когда функция принимает минимальное и максимальное значение):
Меняется в этой функции только sin. sin(2-3x) принимает значения от -1 до 1, то есть минимальное значение у функции будет при sin(2-3x) = 1, а максимальное при sin(2-3x) = -1:
1. 6 - 4sin(2-3x) = 6 - 4*(-1) = 10
2. 6 - 4sin(2-3x) = 6 - 4*1 = 2
E(y) = [2; 10]
Есть более универсальный Оценить область значений можно с производной.
С её можно найти точки максимума и минимума, а после и сами значения функции в этих точках.
А если функция претерпевает разрыв (гипербола например), то производная найти "подозрительную точку". Понять, стремиться ли в этой точке функция к бесконечности можно с пределов (но они в школе изучаются в старших классах обычно). Поэтому опираются чаще на свойства функции (на примере гиперболы -- всегда ветви уходят вверх, к бесконечности) или стараются оценить подставляя некоторые значения х(но подставлять значения наугад -- не самый эффективный метод)
1) (х-2)/(х²+4х-21)
ОДЗ: х²+4х-21≠0
x²+4x-21=0
x₁+x₂=-4
x₁*x₂=-21
x₁=-7; x₂=3
Дробь не имеет смысла, когда её знаменатель равен 0, потому, что на 0 делить нельзя.
ответ: x²+4x-21=0 при х∈{-7;3}
2) 5x²-8=(x-4)(3x-1)+8x
5x²-8=3x²-x-12x+4+8x
2x²+5x-12=0
D=5²-4*2*(-12)=25+96=121 √121=11
x₁=(-5+11)/2*2=16/4=1.5
x₂=(-5-11)/2*2=-6/4=--4
3) x²+2x+c=0 x₁=6
6²+2*6+c=0
36+12+c=0
48+c=0
c=-48
Проверка: х²+2х-48=0
х₁+х₂=-2
х₁*х₂=-48
х₁=6; х₂=-8
6+(-8)=-2; 6*(-8)=-48
Поделитесь своими знаниями, ответьте на вопрос:
2sin^2x+cosx-1=0 решите . покажите как раскрыть скобки при замене на 1-cosx.
2-2cos²x+cosx-1=0
cosx=a
2a²-a-1=0
D=1+8=9
a1=(1-3)/4=-1/2⇒cosx=-1/2⇒x=+-2π/3+2πn,n∈z
a2=(1+30/4=1⇒cosx=1⇒x=2πn,n∈z