motor2218
?>

Найдите: а) шестой; б) тринадцатый челен арифметической прогрессии: 3; 7; 11;

Алгебра

Ответы

vera2job7
Дано
an = a(n-1) + 4
a1 = 3
Тогда легко убедиться, что аn = 3 + 4(n-1).
Подставив в конечную формулу 6 и 13 вместо n получим:
а6 = 23;
а13 = 51.
olgavbaranova

Исследовать функцию y=-x^4+8x^2-9 и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. Точки пересечения с осями координат: 

Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.

Квадратное уравнение, решаем относительно n: 

Ищем дискриминант:

D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

Дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

Обратная замена: х = √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

 x₃ = √6,645751 = 2,57793,     x₄ = -2,577935.

Получаем 4 точки пересечения с осью Ох:

(1,163722; 0),  (-1,16372; 0),  (2,57793; 0),  (-2,57793; 0).

 x₃ = √6,645751 = 2,57793,

Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

Имеем 3 критические точки: х = 0, х = 2 и х = -2.

Определяем знаки производной вблизи критических точек.

x =   -3       -2      -1      0      1       2       3
y' =   60      0      -12     0     12      0     -60.

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).

Возрастает на промежутках (-oo, -2] U [0, 2).

 6. Вычисление второй производной: y''=-12х² + 16 , 

Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции: 
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная  4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)

 8. Искомый график функции в приложении.


Исследуйте функцию и постройте её график y=-x^4+8x^2-9
Владислав1246
a-x^2 \geq |sinx|

График  y=|sinx|  расположен выше оси ОХ.
Точки пересечения с осью ОХ:  x=\pi n\; ,\; n\in Z .
Графики функций  y=a-x^2 - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0  sin0=0 и точка (0,0) является точкой пересечения 
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0  точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ:  а=0.
При каком значении параметра а неравенство а-x^2больше или равно|sinx| имеет единственное решение? н

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите: а) шестой; б) тринадцатый челен арифметической прогрессии: 3; 7; 11;
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bsi771184
arsen-ai-ti
toprussianevent
evge-borisova2
satinvova
anastasiavilina
lionmost6979
Владимировна Екатерина
iqtoy2010
arturnanda803
ganul
mnn99
alex091177443
alislisa191
Ярослав