1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
TrofimovAnastasiya828
04.11.2021
А) Длина стороны АВ:
б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа Хв-Ха Ув-Уа
Получаем уравнение в общем виде: АВ: 4х - 8 = 3у - 6 или АВ: 4х - 3у - 2 = 0 Это же уравнение в виде у = кх + в: у = (4/3)х - (2/3). Угловой коэффициент к = 4/3.
ВС : Х-Хв = У-Ув Хс-Хв Ус-Ув
ВС: 2х + у - 16 = 0. ВС: у = -2х + 16. Угловой коэффициент к = -2.
в) Внутренний угол В:Можно определить по теореме косинусов. Находим длину стороны ВС аналогично стороне АВ: BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977 cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0.447214 Угол B = 1.107149 радиан = 63.43495 градусов.