Денис_Петровна
?>

Производная сложной функции решить y=cos^2(2-4x^2)

Алгебра

Ответы

Исаченко Тераски1181
y=cos^2(2-4x^2)\\\\y'=-2cos(2-4x^2)\cdot sin(2-4x^2)\cdot (-8x)
Pona4ka93

|x² - 16| + |x + 2| = 14 - x - x²

|(x - 4)(x + 4)| + |x + 2| = 14 - x - x²

x₁ = 4  ; x₂ = - 4  ;  x₃ = - 2

1) x ∈ (- ∞ ; - 4)

x² - 16 -x - 2 = 14 - x - x²

2x² = 32

x² = 16

x₁ = - 4 - неуд

x₂ = 4 - неуд

2) x ∈ [ - 4 ; - 2)

- x² + 16 - x - 2 = 14 - x - x²

- x² - x - x + x² = 14 - 14

0 * x = 0

ответ : x ∈ [ - 4 ; - 2)

3) x ∈ [ - 2 ; 4)

- x² + 16 + x + 2 = 14 - x - x²

- x² + x + x + x² = 14 - 18

2x = - 4

x = - 2

4) x ∈ [4 ; + ∞)

x² - 16 + x + 2 = 14 - x - x²

x² + x + x + x² - 14 - 14 = 0

2x² + 2x - 28 = 0

x² + x - 14 = 0

D = 1² - 4 * (- 14) = 1 + 56 = 57

x_{1} =\dfrac{-1-\sqrt{57} }{2} -neyd\\\\x_{2}=\dfrac{-1+\sqrt{57} }{2} -neyd

- 4 + (- 3) + (- 2) = - 9

ответ : - 9


|x²-16| + |x+2| = 14-x-x² Найти сумму целых корней уравнения
sakh2010kprf7

Истоки алгебры уходят к временам глубокой древности. Арифметические действия над натуральными числами и дробями — простейшие алгебраические операции — встречаются в ранних математических текстах[3]. Ещё в 1650 году до н. э. египетские писцы могли решать отвлечённые уравнения первой степени и простейшие уравнения второй степени, к ним относятся задачи 26 и 33 из папируса Ринда и задача 6 из Московского папируса (так называемые задачи на «аха»). Предполагается, что решение задач было основано на правиле ложного положения[9]. Это же правило, правда, крайне редко, использовали вавилоняне[10].

Вавилонские математики умели решать квадратные уравнения. Они имели дело только с положительными коэффициентами и корнями уравнения, так как не знали отрицательных чисел. По разным реконструкциям в Вавилоне знали либо правило для квадрата суммы, либо правило для произведения суммы и разности, вместе с тем метод вычисления корня полностью соответствует современной формуле. Встречаются и уравнения третьей степени[11]. Кроме того, в Вавилоне была введена особая терминология, использовались шумерские клинописные знаки для обозначения первого неизвестного («длины»), второго неизвестного («ширины»), третьего неизвестного («глубины»), а также различных производных величин («поля» как произведения «длины» и «ширины», «объёма» как произведения «длины», «ширины» и «глубины»), которые можно считать математическими символами, так как в обычной речи уже использовался аккадский язык. Несмотря на явное геометрическое происхождение задач и терминов, использовались они отвлечённо, в частности, «площадь» и «длина» считались однородными[10]. Для решения квадратных уравнений было необходимо уметь осуществлять различные тождественные алгебраические преобразования, оперировать неизвестными величинами. Таким образом был выделен целый класс задач, для решения которых необходимо пользоваться алгебраическими приёмами[11].

После того как была открыта несоизмеримость стороны и диагонали квадрата, греческая математика переживала кризис, разрешению которого выбор геометрии как основы математики и определение алгебраических операций для геометрических величин. Геометрической алгебре посвящена вторая книга «Начал» Евклида, работы Архимеда и Аполлония. С использованием отрезков, прямоугольников и параллелепипедов были определены сложение и вычитание, произведение (построенный на двух отрезках прямоугольник). Такое представление позволило доказать дистрибутивный закон умножения относительно сложения, тождество для квадрата суммы. Алгебра первоначально была основана на планиметрии и при в первую очередь для решения квадратных уравнений[12]. Вместе с тем к алгебраическим уравнениям сводятся сформулированные пифагорейцами задачи об удвоении куба и трисекции угла, построение правильных многоугольников[13]. Решение кубических уравнений получило своё развитие в работах Архимеда (сочинения «О шаре и цилиндре» и «О коноидах и сфероидах»), который исследовал в общем виде уравнение {\displaystyle x^{3}+ax+b=0}x^{3}+ax+b=0. Отдельные задачи решались с конических сечений[14].

Неожиданный переход к алгебре, основанной на арифметике, произошёл в работах Диофанта, который ввёл буквенные обозначения: неизвестное число он назвал «число», вторую степень неизвестного — «квадрат», третью — «куб», четвёртую — «квадрато-квадрат», пятую — «квадрато-куб», шестую — «кубо-куб». Также он ввёл обозначения для отрицательных степеней, свободного члена, отрицательного числа (или вычитания) и знака равенства. Диофант знал и использовал правило переноса вычитаемого из одной части уравнения в другую и правило сокращения равных членов[15]. Исследуя уравнения третьей и четвёртой степеней, Диофант для нахождения рациональной точки на кривой использует такие методы геометрической алгебры, как провести касательную в рациональной точке кривой или провести прямую через две рациональные точки. В X веке «Арифметика» Диофанта, в которой он изложил свои методы, была переведена на арабский язык, а в XVI веке достигла Западной Европы, оказав влияние на работы Ферма и Виета. Идеи Диофанта можно заметить также в работах Эйлера, Якоби, Пуанкаре и других математиков вплоть до начала XX века. В настоящее время проблемы Диофанта принято относить к алгебраической геометрии[16].

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Производная сложной функции решить y=cos^2(2-4x^2)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Kochereva-Sergei
klimovala2
Telenkovav
kozhevniks
jakushkinn
I.B.Petrishchev
Николаевич1033
aniramix
antoska391
tatianaavoronina66
alex6543213090
fotomuha1
forwandy42
natasham-716
lavorenn