Нам нужно найти при каких значениях а уравнение (а + 4)х = а - 3 не имеет корней.
Давайте сначала выразим из уравнения переменную х через а.
Разделим обе части уравнения на скобку (а + 4):
х = (а - 3)/(а + 4).
Рассмотрим полученное равенство.
В выражении стоящем в правой части равенства есть знак дроби ( иными словами деления).
Нам известно, что на ноль делить нельзя. Найдя те значения а которые обращают знаменатель в ноль и будут ответом на вопрос задания.
а + 4 = 0;
а = - 4.
При а = - 4 знаменатель дроби обращается в 0, следовательно уравнение не имеет корней.
ответ: б = -4.
Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
90x/(x+1) = (300-90x)/x
90x^2 = 300x + 300 — 90x^2 — 90x
6x^2 — 7x — 10 = 0
D = 289
x1 = 2 (ч) время мотоциклиста от А до С
x2 = -5/6 (не удовлетворяет условию задачи)
1) 90·2 = 180 (км) — расстояние от А до С.
ответ: 180
Поделитесь своими знаниями, ответьте на вопрос:
2) b³ - 2³=(b-2)(b²+2b+4)
3)3³ - a³=(3-a)(9+3a+a²)
4)1³ - z³=(1-z)(1+z+z²)
5)(x+y)(x²-xy+y²)