Возьмём всю работу = 1 1 экскаватор , работая один, выполнит всю работу за (х + 10) дней 2 экскаватор, работая один, выполнит всю работу за х дней в день 1 экскаватор делает 1/(х + 10) всей работы в день 2 экскаватор делает 1/х всей работы в день оба , работая вместе , делают 1/12 всей работы 1/(х + 10) + 1/ х = 1/12 |· 12х(х + 10) 12 х + 12( х + 10) = х(х + 10) 12 х + 12х +120 = х² + 10 х х²- 14 х - 120 = 0 по т. виета х1 = 20 и х2 = 6
Дружинин
05.07.2021
Решение верное с мелкими замечаниями. 1) sin²x≠0, Здесь должна быть проверка, а не утверждение. Нужно проверить, что x=πn не является решением этого уравнения, и только после этого делить на sin²x. 2) для уравнения ctgx =-1 решением должен быть угол из интервала [0; π], поэтому решением будет x=3π/4+πk 3) x=3π/4+πk; x=arcctg1/3+πk - это независимые корни, поэтому нельзя использовать одно целое число k на двоих. x=3π/4+πk; x=arcctg1/3+πm , k,m ∈ Z
Вторая часть задания. Укажите корни этого уравнения, принадлежащие отрезку [-9π/2 ; -3π] ⇔ [-4,5π ; -3π] В полученные корни x=3π/4+πk; x=arcctg1/3+πm , k,m ∈ Z нужно последовательно подставлять значения целых чисел, и полученные х проверять на попадание в интервал 1) x=3π/4+πk= 0,75π + πk k=-6 ⇒ x=0,75π - 6π = -5,25π < -4,5π ⇒ x∉[-4,5π ; -3π] k=-5 ⇒ x=0,75π - 5π = -4,25π ⇒ -4,5π<-4,25π<-3π корень подходит k=-4 ⇒ x=0,75π - 4π = -3,25π ⇒ -4,5π<-3,25π<-3π корень подходит k=-3 ⇒ x=0,75π - 3π = -2,25π > -3π ⇒ x∉[-4,5π ; -3π]
2) x=arcctg1/3+πm Сначала нужно понять, как выглядит угол α=arcctg1/3 ctgα = cosα/sinα = 1/3 (0; π/4) ⇒ cos α>sin α ⇒ cosα/sinα > 1 ⇒ угол arcctg1/3 не в этом интервале (π/4; π/2) ⇒ cosα<sinα ⇒ 0 < cosα/sinα < 1 Следовательно π/4 < arcctg 1/3 < π/2 ⇔ 0,25π < arcctg 1/3 < 0,5π