![2lg2+lg(5^{ \sqrt{x} }+1)=2+lg(5^{1- \sqrt{x} }+5) \\ lg4+lg(5^{ \sqrt{x} }+1)=2+lg[5^{1- \sqrt{x}}(5^{ \sqrt{x} }+1)] \\ lg4+lg(5^{ \sqrt{x} }+1)=2+lg(5^{1- \sqrt{x}})+lg(5^{ \sqrt{x} }+1) \\ lg(5^{1- \sqrt{x}})=lg4-2 \\ lg(5^{1- \sqrt{x}})=lg \frac{1}{25} \\ 5^{1- \sqrt{x}}= \frac{1}{25} \\ 1- \sqrt{x}=-2 \\ \sqrt{x} =3 \\ x=9](/tpl/images/0675/3417/f80f1.png)
а) у = -1/3 х
А(6;-2) -1/3 * 6 = -2; -2 = -2 точка принадлежит данному гр функции
В(-2; -10) -1/3 * (-2) = 2/3; 2/3 ≠-10 точка не принадлежит
С(1; - 1) -1/3 * 1 = -1/3 ; - 1/3 ≠-1 точка не принадлежит гр функции
Д(-1/3; 1_2/3) -1/3 * (-1/3) = 1/9; 1/9 ≠1_2/3 точка не принадлежит
Е(0; 0) -1/3 * 0 = 0 ; 0 = 0 точка принадлежит гр функции
Точку (0; 0) можно было и не проверять, так как в условии сказано, что это график прямой пропорциональности, а её график всегда проходит через начало координат - точку (0; 0)
б) у = 5х
А(6; -2) 5*6 = 30; 30≠-2 не принадлежит гр функции
В(-2; -10) 5 * (-2) = -10; -10 = -10 точка принадлежит гр функции
С(1; -1) 5 * 1 = 5; 5≠-1 точка не принадлежит гр функции
Д(-1/3; 1_2/3) 5 * (-1/3) = - 5/3; - 5/3 ≠ 5/3 точка не принадлежит гр функции
Е(0;0) принадлежит гр функции
Поделитесь своими знаниями, ответьте на вопрос: