верно , обратное нет
Объяснение:
пусть р - простое , рассмотрим остатки от деления р на 6 :
p = 6b + q , где 0 ≤ q ≤ 5 , если q = 2 , то p = 2(3b+1) , это
число четно и больше 2 , значит не простое , если q = 3 , то
p = 3(2q+1) , это число кратно 3 и больше 3 и значит также не
простое , если q = 4 , то p = 2( 3b + 2) , это число четно и
больше 2 и следовательно не простое , если q = 0 , то p
кратно 6 и не может быть простым , остаются 2 варианта : 1)
q= 1 , то есть p = 6b+1 и 2) q = 5 ⇒ p = 6b + 5 = 6b+6-1 =
6(b+1) - 1 = 6k -1 , а значит любое простое имеет вид : p = 6n±1
обратное утверждение неверно : например число 35 = 6·6 - 1
, но простым число 35 не является
Sn = (2*a1+(n-1)*d)*n) / 2
a1 - первый член прогрессии (у нас это 5)
d - разность прогрессии
n - количество членов, для которых мы считаем сумму.
Итак, поехали. Сначала найдем d. Для этого нужно поделить соседние члены прогрессии.
d = -10 / 5 = -2
Теперь подставляем известные нам данные в формулу, посчитаем что сможем и выразим n.
-425 = ((2*5+(n-1)*(-2))*n)/2
-425 = (10 + (-2*n+2)*n)/2
-425 = (10 -2*n^2 + 2*n)/2
- 2n^2 + 2n + 10 = -850
-2n^2+2n+10+850=0
-2n^2+2n+860 = 0
Вот и получилось у нас квадратное уравнение ;)
разделю его на - 2, чтобы проще было решать.
n^2-n-430 = 0
Теперь считаем дискриминант
D= b^2 - 4ac
a - коэффициент перед х в квадрате
b - коэффициент перед х
с - число без переменной.
D= 1 + 4*430= 1721
n = (-b2+-корень из D)/2
n1 = (1+корень из 1721)/2
n2 = (1- корень из 1721)/2
к сожалению я либо где-то обсчиталась, либо надо извлечь из корня приблизительное значение, т.к. оно ну никак не извлекается. Ошибку найти не могу, но принцип решения ясен? =)
Потом в итоге получется 2 разных n. В ответ пиши только положительное, т.к. отрицательных n не бывает.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражения -3x²+7 при x=-5
-3*(-5²)+7=-3*25+7=-75+7=-68