во всех данных выражениях знаменатель дроби должен быть отличным от нуля. приравняем знаменатели дробей к нулю, и получившееся еся решения исключим из множества действительных чисел.
а) 1/(2х^2 - 2х + 2);
2х^2 - 2х + 2 = 0;
х^2 - х + 1 = 0;
d = b^2 - 4ac;
d = (-1)^2 - 4 * 1 * 1 = 1 - 4 = -3 - корней нет, т.к. если дискриминант отрицательный, то уравнение не имеет корней.
выражение 2х^2 - 2х + 2 ни при каких значениях х не будет равняться 0, поэтому выражение имеет смысл при любых значениях х.
ответ. х ∈ (-∞; +∞).
б) (х - 4)/(12х + 3х^3);
12х + 3х^2 = 0 - вынесем за скобку общий множитель 3х;
3х(4 + х) = 0 - произведение двух множителей равно нулю тогда, когда один из множителей равен нулю;
1) 3х = 0;
х = 0;
2) 4 + х = 0;
х = -4.
выражение имеет смысл при любых значениях х, кроме -4 и 0.
ответ. x ∈ (-∞; -4) ∪ (-4; 0) ∪ (0; +∞).
в) (х^2 - 3)/(х^2 + 3);
х^2 + 3 = 0;
х^2 = -3 - корней нет, т.к. квадрат любого выражения не может быть отрицательным.
выражение имеет смысл при любых значениях х.
ответ. x ∈ (-∞; +∞).
Поделитесь своими знаниями, ответьте на вопрос:
22. -2
23. 1
Объяснение:
22. Рассмотрим каждое из подкоренных выражений:
Поскольку квадрат какого-либо числа неотрицателен,
, отсюда:
Значит, левая часть![\sqrt[3]{2x^2+8x+72}+\sqrt[3]{3x^2+12x+12}\geq \sqrt[3]{64}+\sqrt[3]{0}=4](/tpl/images/4540/3998/87f22.png)
Правая часть
Левая часть не меньше 4, а правая не больше 4. Значит, равенство достигается тогда и только тогда, когда обе части равны 4. Правая часть равна 4:
Проверим этот корень для левой части:
Уравнение имеет единственный корень x = -2.
23. Заметим, что
Значит,
(знаменатель не обращается в ноль, так как x ≥ 0 по ОДЗ, значит,
).
Пусть
. Тогда уравнение имеет вид:
Заметим, что t = 4 — корень многочлена левой части. Поделив его столбиком на (t - 4), получим его разложение на множители:
Поскольку t > 0,
, значит, обе части можно поделить на второй множитель, так как он не равен нулю. Получаем:
Левая часть неотрицательна, значит, правая часть также неотрицательна:
Корень удовлетворяет условиям 0 ≤ x ≤ 4, значит, он подходит.