Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
3. мин
е
т
з.м1ш
л
1 + kni
коэффициенты пульсации напряжения и тока связаны между собой в виде
к
л
(8-28)
характер зависимости коэффициентов пульсации друг от друга при разных коэффициентах использования напряжения питания показан на графиках (рис 8-5, б). из этого графика следует, что малые значения коэффициентов пульсации возможны при низком использовании питающего напряжения.
процессы в накопителе при его разряде на нагрузку с импульсом прямоугольной формы описываются исходным уравнением
dl du
е
и
hrz или r
(8-29)
полагая
и
с с
и
и(; --с);
de di
,1 i
после к виду
несложных преобразований исходное уравнение можно
r \
rrh 1 crrii
h7
или
crrn
(8-30)
где обозначено
решение уравнения (3) имеет вид:
i p-at
3. мйн*
r3 +
.-ah.
); 1
з.мин
(1 - n).
зарядный ток г'з оказывается минимальным в момент времени / = о, когда еще только начинается разряд конденсатора, т. е. до начала протекания импульса тока по нагрузке.
при подстановке значения тока и представлении его в относительном масштабе, получим:
(8.31)
а при < 1
л
подставляя значение тока i% в .mi уравнение (и^ -
е - isra) и выражая напряжение в относительном масштабе, можно найти
uq к
1 - (1 - п) е- = j-- (1 -
или при к > > 1
и^ е
(8-32)
во время /== tji-т- г , т. е. в промей< : утках между импульсами тока в нагрузке, конденсатор будет заряжаться и ток заряда будет уменьшаться с ростом напряжения uq на конденсаторе. в эти моменты времени ток через зарядное сопротивление описывается уравнением
ь - сиакс^ - смакс^
где 1 - вpeш, изменяющееся в пределах от до г^. учитывая, что / = ; к ;
смакс =r-j~ = пи -j- . получим
/пи
в 5ти же отрезки времени напряжение иа конденсаторе будет
с = - /з^з = 11 - (1 - пг) е- ].
или
-=1 (1 т)е- . (8-34)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите сумму первых n членов прогрессии: 2; 2²; 2³; ;
Sn=b1(q^n-1)/q-1.
Sn=2(2^n-1)/2-1=2(2^n-1).