ответ:
log3 = 2*log9 - 1
log3 = 2 * log(3^2) - log3 3
log3 = 2 * 1\2 * log3 - log3 3
log3 = log3 - log3 3
log3 (sin 3x - sin x) = log3 [(17*sin 2x) \ 3]
теперь основания логарифмов одинаковые =>
решать выражения при логарифмах (приравнять их):
sin 3x - sin x) = [(17*sin 2x) \ 3]
3*(sin 3x - sin x) = 17*sin 2x
3*[(3sin x - 4sin^3 x) - sin x] = 17*(2sin x * cos x)
3*(2sin x - 4sin^3 x) = 34*sin x * cos x > (: ) на sin x =>
6 - 12sin^2 x = 34cos x
6 - 12*(1 - cos^2 x) = 34cos x
6 - 12 + 12cos^2 x - 34cos x = 0
12cos^2 x - 34cos x - 6 = 0 > (: ) на 2 и cos x = t
6t^2 - 17t - 3 = 0
дальше легко
объяснение:
Обратившись к основному тригонометрическому тождеству, получим:
2sin^2(x) - 5sin(x)cos(x) + 5cos^2(x) = sin^2(x) + cos^2(x);
sin^2(x) - 5sin(x)cos(x) + 4cos^(x) = 0.
Разделим полученное уравнение на cos^2(x):
tg^2(x) - 5tg(x) + 4 = 0.
Произведем замену переменных t = tg(t):
t^2 - 5t + 4 = 0.
Корни квадратного уравнения вида ax^2 + bx + c = 0 определяются
по формуле: x12 = (-b +- √(b^2 - 4 * a * c) / 2 * a.
t12 = (5 +- 3) / 2;
t1 = 1; t2 = 4.
tg(x) = 1;
x1 = π/4 +- π * n.
x2 = arctg(4) +- π * n.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Доказать что среди любых 15 натуральных чисел есть 2 числа разность которых делется на 14
15-1=14 14:14=1
2)от 456 до 470
470-456=14 14:14=1
Доказано