ВасилийМалюга152
?>

Решение линейных уравнений 1) -10х-8=-7х 2) -6х-8=-3х 3) -10х+7=-х

Алгебра

Ответы

Половников1964
1)-10x+7х=8
-3x=8
x=8:(-3)
x=-2 целых 2/3
2)-6х+3х=8
-3х=8
х=8:(-3)
х=-2 целых 2/3
3)-9х=-7
х=-7:(-9)
х=7/9
monenko
Там переносить надо,...
1)-10х+7х=8
-3х=8
х=-8/3=-2 2/3
2)-3х=8
то же самое что а первом
3)-9х=-7
х=1 7/9
patersimon1

ПРИМЕР №1. Найти остаток от деления уголком.

Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой

2.

x6 + 2x5 - x3 + x x4 - 4x + 2

x6 - 4x3 + 2x2 x2

2x5 + 3x3 - 2x2 + x

3.

x6 + 2x5 - x3 + x x4 - 4x + 2

x6 - 4x3 + 2x2 x2 + 2x

2x5 + 3x3 - 2x2 + x

2x5 - 8x2 + 4x

3x3 + 6x2 - 3x

Целая часть: x + 2

Остаток: 3x2 + 6x - 3

ПРИМЕР №2.. Разделить многочлены столбиком.

Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой

2.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2

- 7/2x2 + x + 3

3.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2 + 7/4x

- 7/2x2 + x + 3

- 7/2x2 - 21/4x

25/4x + 3

4.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8

- 7/2x2 + x + 3

- 7/2x2 - 21/4x

25/4x + 3

25/4x + 75/8

- 51/8

Целая часть: - 1/2x2 + 7/4x - 25/8

Остаток: - 51/8

eidevyatkina

x_{1} = -3 + \sqrt{6}           x_{2} = -3 - \sqrt{6}           x_{3} = 1                x_{4} = -7

Объяснение:

(x² + 6x)² - 4(x² + 6x + 1) - 17 = 0

t = (x² + 6x)

t² - 4(t + 1) - 17 = 0

t² - 4t - 4 - 17 = 0

t² - 4t - 21 = 0

t² + 3t - 7t - 4 - 17 = 0 (Теорема Виета)

t² + 3t - 7t - 21 = 0

t(t + 3) - 7(t + 3) = 0

(t + 3)(t - 7) = 0

t₁ = -3; t₂ = 7

x² + 6x + 3= 0                                           x² + 6x - 7 = 0

D = b² - 4ac                                              D = b² - 4ac

D = 6² - 4 * 1 * 3                                        D = 6² - 4 * 1 * (-7)

D = 36 - 12                                                D = 36 + 28

D = 24                                                       D = 64

x_{1,2} = \frac{-b +- \sqrt{D} }{2a}                                           x_{3,4} = \frac{-b +- \sqrt{D} }{2a}

x_{1,2} = \frac{-6 +- \sqrt{24} }{2 * 1}                                          x_{3,4} = \frac{-6 +- \sqrt{64} }{2 * 1}

x_{1,2} = \frac{-6 +- 2\sqrt{6} }{2}                                          x_{3,4} = \frac{-6 +- 8 }{2}

x_{1} = \frac{2(-3 + \sqrt{6)} }{2}           x_{2} = \frac{2(-3 - \sqrt{6)} }{2}          x_{3} = \frac{2 }{2}               x_{4} = \frac{-14}{2}

x_{1} = -3 + \sqrt{6}           x_{2} = -3 - \sqrt{6}           x_{3} = 1                x_{4} = -7

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решение линейных уравнений 1) -10х-8=-7х 2) -6х-8=-3х 3) -10х+7=-х
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bugaevnicky
Dragun1684
Анатолий
notka19746
suxoruchenkovm171
Светлана
xsmall1
yahottabych201379
eleniloy26
rinan2013
ВостриковаСтародубцева1980
vorobyeva6428
Aliferenko
Анна1169
windless-el