2,5 (часа) пароход по течению реки.
1,5 (часа) пароход против течения реки.
Объяснение:
Пароход по течению реки и против течения путь 68 км за 4 часа. Сколько времени он двигался против течения и по течению реки (отдельно), если по течению он двигался со скоростью 20 км / ч, а против течения - 12 км / ч?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние по течению
у - расстояние против течения
х/20 - время по течению
у/12 - время против течения
По условию задачи составляем систему уравнений:
х+у=68
х/20 + у/12 =4
Преобразуем второе уравнение, умножим его на 240, чтобы избавиться от дроби:
12х+20у=960/4 для упрощения:
3х+5у=240
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=68-у
3(68-у)+5у=240
204-3у+5у=240
2у=240-204
2у=36
у=18 (км) - расстояние против течения.
х=68-у
х=68-18
х=50 (км) - расстояние по течению.
Скорость по течению и против течения известны, можем вычислить время:
50/20=2,5 (часа) пароход по течению реки.
18/12=1,5 (часа) пароход против течения реки.
Рисуешь числовую окружность радиусом, равным 1 и на оси х отмечаешь точку с координатой 0,5 через эту точку проводишь вертикальную линию вверх до пересечения с окружностью. Автоматически получаешь точку с у-координатой √3/2.
Теперь давай посчитаем, какому углу она соответствует.
Если разделить верхнюю половину окружности на 3 части, то твоя точка как раз совпадёт с 1/3 полуокружности. Поскольку полуокружность соответсвует углу, равному π(180 градусов), то твоя точка соответствует π/3 (60°).
Это если отсчитывать от оси х в положительную сторону (против часовой стрелки).
А если отсчитывать в отрицательную сторону (по часовой стрелке, то мы пройдём 1/2 окружности и ещё 2/3 её. Половина окружности (я уже говорила) соответствует π, а 2/3 соответствует 2π/3, и всё это со знаком "-"!!
Всего получается -π- 2π/3 = -5π/3 (-300°)
ответ: наименьший положительный угол π/3 (60°)
наибольший отрицательный угол -5π/3 (-300°)
Поделитесь своими знаниями, ответьте на вопрос:
Подайте тричлен а^2-8а+16 у вигляді квадрата двочлена
a^2-2*a*4+(4)^2=(a-4)^2