Пусть 1го раствора взяли х (единиц), а 2го у (тех же единиц), тогда т.к. W(сухого вещества в х) = 20% = 0.2, то сухого вещества в х получилось 0.2х (по массе), а т.к. W(сухого вещества в у) = 50% = 0.5, то сухого вещества в у получилось 0.5у (опять же по массе). Масса итогового раствора равна сумме масс 1го и 2го растворов, а именно: х + у. Тогда т.к. W(сухого вещества в итоговом растворе (х + у) ) = 30% = 0.3, то масса сухого вещества в итоговом растворе равна 0.3(х + у). А так как масса сухого вещества не изменилась и равна сумме масс сухого вещества в 1м и 2м растворах, то составим уравнение: 0.2х + 0.5у = 0.3(х + 3), то есть 0.2х + 0.5у = 0.3х + 0.3у. Тогда перенесем все компоненты с х в "правую" часть относительно знака "равно", а все компоненты с у - в другую часть относительно знака "равно" : 0.5у - 0.3у = 0.3х - 0.2х, то есть 0.2у = 0.1х. Домножим для удобства обе части на 10, тогда: 2у = х => х в 2 раза больше у => растворы были взяты в отношении 2у : у = 2 : 1 (т.к. х = 2у). ответ: растворы были взяты в отношении 2 : 1 (20%ный к 50%ному).
apro3444595
20.02.2022
Периметр прямоугольника = (а+b)*2. = 32. Поэтому половина периметра = сумме двух смежных сторон прямоугольника, т.е. а+в=16 Пусть х -ширина Тогда 16-х - длина х*(16-х) - площадь старого прямоугольника х-2 -уменьшенная ширина прямоугольника 16-х+5 = 21-х - увеличенная прямоугольника Тогда (х-2)*(21-х) - площадь нового прямоугольника, что больше по условию задачи на 7² (т.е. на 49). Составляем уравнение: х(16-х) = (х-2)*(21-х) - 49 16х-х²=21х-42-х²+2х-49 16х-21х-2х-х²+х² = -49-42 -7х = -91 х=13 (см) - ширина старого прямоугольника 16-13 = 3(см) - длина старого прямоугольника. Проверяем: (13+3)* 2=32 -периметр старого 13*3=39 -площадь старого (13-2)*(3+5)=11*8 = 88 - площадь нового 88-39 = 49 - на столько новая площадб больше старой. все сходится ответ: 3 см и 13 см