Alekseevna1811
?>

Какой длины нужно взять перекладину чтобы ее можно было положить концами на две вертикальные опоры высотой 9м и 5м поставленные на растоянии 3м одна от другой

Алгебра

Ответы

Геннадьевна Вета560
Наверно так:
если 3 м это расстояние одной опоры к другой, то 3м + 5м = 8м
Мартынова1638

ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

Объяснение:

Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.

Вот так будет выглядеть Ваше условие на математическом языке:  

   \[cos x = \frac{1}{2}\]

Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:  

   \[cos x = a\]

 

   \[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

   \[cos x = \frac{1}{2}\\]

 

   \[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]

Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

   \[cos x = \frac{1}{2}\]

 

   \[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]

А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:  

   \[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]

ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

Станиславович1830
№1. Делаю только «а», «б» делаете по аналогии.
а) Предположим, что графики функций y = x^2 и y = 4. Чтобы найти координату x точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
x^2 = 4 \\ 
x = \pm 2
y можем найти подставив x в выражение первой функции y = x^2, а можно сделать проще. Так как пересечение будет с прямой y = 4, то и точки пересечения будут иметь координату y = 4. Итак, получилось две точки пересечения с координатами: (2;4),(-2;4).
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок [0;1] (этот отрезок по оси x), найдем значения y на концах этого отрезка:
y_0 = f(0) = 0^2 = 0 \\ 
y_1 = f(1) = 1^2 = 1
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
y_{(-3)} = f(-3) = (-3)^2 = 9 \\ 
y_0 = f(0) = 0^2 = 0
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.

№1. найдите точки пересечения прямой и параболы: а) y=x^2(x в квадрате) и y=4 б) y= -x^2(x в квадрат

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какой длины нужно взять перекладину чтобы ее можно было положить концами на две вертикальные опоры высотой 9м и 5м поставленные на растоянии 3м одна от другой
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

slonikkristi69
maksimforyou20
info9
oskina3
edelstar83
magazin7452834
nikomuneskazhu60
1) (8y-12)(2, 1+0, 3y)=0 2)7x-(4x+3)=3x+2
compm
sergeevna
tat72220525
deshkina82
Смирнов_Андрей691
shabunina17
julichca68
Usynin-nikolay