avdeevana
?>

Sinx- sin2x = sin 3 х( кубически) решите.

Алгебра

Ответы

kav511
Sinx -sin2x=sin³x
sinx-2sinxcosx=sin³x
sinx-2sinxcosx-sin³x=0
sinx(1-2cosx-sin²x)=0
a)sinx=0, x=kπ, k∈Z
b)1-2cosx-sin²x=0
   1-2cosx-(1-cos²x)=0
   1-2cosx-1+cos²x=0
   cos²x-2cosx=0
  cosx(cosx-2)=0
  cosx=0, x=π/2+kπ,k∈Z
  cosx-2=0, cosx=2, x∈∅
Bmecte: x=kπ/2, k∈Z
maryariazantseva

Xi        0         1/3         2/3          1  

Pi       1/8        3/8        3/8        1/8

M[X]=1/2; D[X]=1/12; p=0,875.

Объяснение:

Частота появления события А является случайной величиной, обозначим её через X.

Так как грань с нечётным количеством очков может выпасть 0, 1, 2 или 3 раза, то частота появления принимает значения 0, 1/3, 2/3 и 1. При этом так как на игральной кости 3 грани с нечётным количеством очков и 3 - с чётным, то вероятность события А в одном опыте (то есть при одном бросании кости) равна 3/6=1/2. Найдём соответствующие вероятности:

P0=1/2*1/2*1/2=1/8; P1=3*1/2*1/2*1/2=3/8; P2=3*1/2*1/2*1/2=3/8; P3=1/2*1/2*1/2=1/8.

Проверка: p0+p1+p2+p3=1, так что вероятности найдены верно. Составляем закон распределения частоты появления события А:

Xi        0          1/3        2/3          1  

Pi       1/8        3/8        3/8        1/8

Математическое ожидание M[X]=∑Xi*Pi=1/2; дисперсия D[X]=∑(Xi-M[X])²*Pi=1/12. Пусть событие А1 заключается в том, что событие A появится хотя бы в одном испытании. Для нахождения вероятности P(A1) рассмотрим противоположное ему событие B1, которое заключается в том, что грань с нечётным количеством очков не появится ни при одном броске. Так как события A1 и B1 - независимые и притом образуют полную группу, то P(A1)+P(B1)=1, откуда P(A1)=1-P(B1). А так как P(B1)=1/2*1/2*1/2=1/8, то P(A1)=1-1/8=7/8=0,875.

MAXIM76748

Всего 60 трехзначных чисел

На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.

5·4·3=60

а) кратны трем те числа, у которых сумма цифр кратна трем 

Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:

123; 132;321;312;231;213

Возможностей 4:

1+2+3=6 кратно 3

2+3+4= 9 кратно 3

3+4+5=12 кратно 3

1+3+5=9 кратно 3

В каждой возможности 6 чисел. Всего 24 числа.

б) Кратны четырем те трехзначные числа, у которых  две последние цифры  кратны 4. Возможны варианты:

*12

*24

*32

*52

На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел

в) кратных 5:

12:

на последнем месте обязательно  располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся  цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Sinx- sin2x = sin 3 х( кубически) решите.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zaschitin48
Khiryanov
orinvarostov
MAXIM76748
Avolohova
Ragim777hazarovich
vetviptime
isinyakin
Sergei1198
nat63nesnova5
Владимировна Екатерина
Разложить на множитель многочлен :25a² - 9b⁴
potapin
Dmitrii_Shamilevich2019
с заданием по алгебре!! очень
Мамедов
Aleks0091