Y=x³ -24x² +19 на отрезке (-4;4) найдем значения на концах отрезка у(-4)=-64-24*16+19= 365 у(4)=64-24*16+19= 301 найдем экстремумы функции y⁾=(x³ -24x² +19)⁾=3х²-48х 3х²-48х=0 х(3х-48)=0 при х=0 и х=16 - не принадлижит отрезку (-4;4) найдем вторую производную y⁾=(3х²-48х)⁾=6х-48 6х-48=0 x=8 >0 значит это точка минимума
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
znaberd786
05.03.2022
Пусть расстояние от В до точки встречи S км/ч. Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км:
(18+S) / x = 4/3 отсюда Х = 3 * (18+S) / 4
За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км:
Проверка: первый за 4/3 часа проехал 18+10/3 = 64/3 км. Его скорость 64/3 / (4/3) = 16 км/ч. Скорость второго 16-5=11 км/ч. За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 18 - 44/3 = 10/3 км от пункта В
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти наибольшее значение функции y=x^3-24x^2+19 на отрезке (-4; 4)
найдем значения на концах отрезка
у(-4)=-64-24*16+19= 365
у(4)=64-24*16+19= 301
найдем экстремумы функции
y⁾=(x³ -24x² +19)⁾=3х²-48х
3х²-48х=0
х(3х-48)=0 при х=0 и х=16 - не принадлижит отрезку (-4;4)
найдем вторую производную
y⁾=(3х²-48х)⁾=6х-48
6х-48=0 x=8 >0 значит это точка минимума
х=0 y(0)=0³ -24*0² +19=19
mах т.(-4; 365) ,min (0 ;19)