вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
х∈ (-∞, 2]∪[6, +∞).
Объяснение:
Решить неравенство:
x² - 8x + 12 ≥ 0
Приравнять к нулю и решить как квадратное уравнение:
x² - 8x + 12 = 0
D=b²-4ac = 64-48=16 √D=4
х₁=(-b-√D)/2a
х₁=(8-4)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(8+4)/2
х₂=12/2
х₂=6:
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 6, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), слева и справа от значений х, то есть, решения неравенства находятся в интервалах
х∈ (-∞, 2]∪[6, +∞).
Неравенство нестрогое, значения х=2 и х=6 входят в решения неравенства, поэтому скобки квадратные.
Скобки при знаках бесконечности всегда круглые.
Поделитесь своими знаниями, ответьте на вопрос:
Обьем куба равен 27 см кубических. найти длину ребра куба и площадь полной поверхности куба.
а=3 см. - длина ребра куба.
S=6*a² - площадь куба.
S=6*3²=6*9=54 см²
ответ: 3 см длина ребра, 54 см² площадь полной поверхности куба.