Криволинейной трапецией называется плоская фигура, ограниченная осью Х, прямыми a и b, и графиком непрерывной на отрезке (a,b) функции f(x), которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисc. Тогда площадь криволинейной трапеции численно равна определенному интегралу f(x) по dx от а до b.
1) 4x² + 7x + 3 = 0 D = 49 - 4*4*3 = 49 - 48 = 1 √D = 1 x1= ( -7+1)/8 = - 6/8 = - 3/4 x2= ( -7- 1)/8 = - 8/8 = -1 Тогда по теореме о разложении квадратного трехчлена на множители 4x² + 7x + 3=4(х +1)(х + 3/4) 2) x² + bx +4 = 0 1. Предположим, что уравнение имеет два различных корня, один из которых равен 3, тогда по теореме Виета: х1 +х2 = - b => 3 + х2 = -b => х2 = -b - 3 => х1*х2 = 4 3*х2 = 4 х2 = 4/3 ( пусть х1=3 )
=> -b - 3 = 4/3 -b = 4/3 + 3 -b = 4 1/3 b = - 4 1/3 => при b = - 4 1/3 уравнение имеет два корня, один из которых равен 3.
2.Уравнение имеет два различных корня, если D>0, D = b² - 4*1*4 = b² - 16 b² - 16 > 0 (b - 4)(b + 4) > 0 b < -4 или b > 4 Уравнение имеет два различных корня, если b < -4 или b > 4.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь криволинейной трапеции, ограниченной прямыми х=а, х=b, осью ох и графиком функции у=f(x) a=-3, b=-1 f(x)=1/x^2
Криволинейной трапецией называется плоская фигура, ограниченная осью Х, прямыми a и b, и графиком непрерывной на отрезке (a,b) функции f(x), которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисc. Тогда площадь криволинейной трапеции численно равна определенному интегралу f(x) по dx от а до b.