1661
Объяснение:
По условию на доске написаны составные числа
a₁, a₂, ..., aₓ,
где aₓ ≤ 1700 и НОД(a₁, a₂)=...=НОД(a₁, aₓ)=НОД(a₂, a₃)=...=
=НОД(a₂, aₓ)=...=НОД(aₓ₋₁, aₓ) = 11.
Как известно, любое составное число А можно представить в виде разложения на простые множители
где простые числа, неотрицательные целые числа.
Так как наибольший общий делитель (НОД) любых двух чисел равен 11, то разложение каждого числа содержит множитель pₓ = 11 и αₓ = 1, а остальные простые множители любой пары различны. Отсюда, первое число, которого написал Олег - это 11. Далее, последовательность можно представить в виде
11·2, 11·3, 11·5, 11·7, 11·11, ..., 11·pₐ.
Из 11·pₐ ≤ 1700 находим pₐ:
11·pₐ ≤ 1700
pₐ ≤ 1700:11
pₐ ≤ 154 6/11.
Наибольшее простое число удовлетворяющее последнее неравенство - это 151. Тогда 11·151= 1661.
Если я правильно поняла, то нужно заполнить поле y при определенном x. Так и поступим.
Подставляем на место x поочередно числа. Первое уравнение я напишу подробно.
y= -3.1 + (-8.9) x= -8.9
y= -3.1-8.9 (плюс на минус будет минус)
Если только начали работать с минусами то можно их вынести за скобку.
y= -(3,1+8,9)
y= -(12) = -12
При x= -8.9 y=-12
Идем далее. Все делаем по тому же принципу, расписывать я эти выражения не буду.
x=-2.4
y= -3.1+(-2.4)
y= -5.5 При x=-2.4 y=-5.5
x= 1.9
y=-3.1+1.9
y= 1.9-3.1(от перемены мест слагаемых значение суммы не меняется)
y=-1.2 x= 1.9
y= -3.1+7.6
y= 4.5 x=7.6
y=-3.1+12.9
y= 9.8 x= 12.9
Готово. Надеюсь правильно поняла задание. Пс. Это можно было решить и на калькуляторе)
Поделитесь своими знаниями, ответьте на вопрос:
При каких значения k уравнение 4x^2+2kx+9=0 имеет один корень?
D = b^2 - 4*a*c = (2k)^2 - 4*4*9 = 4k^2 - 144;
4k^2 - 144 = 0
4k^2 = 144
k^2 = 144/4
k^2 = 36
k = |6|
k = 6 или k = -6
ответ: -6 и 6.