Теперь чтобы решить это добро, возьмем косинус от левой и от правой части.
Так что применим это сюда:
Проверим , значит, мы можем смело поделить на
Получим
Теперь надо вернуться к ограничению:
Из целых чисел на этом отрезке есть только k=2
ответ:
shuxratmaxmedov
20.08.2020
Скорость тела = первая производная расстояния по времени = 24т - 6т^2 ускорение = вторая производная = 24 - 12т ускорение равно 0 в момент времени т=2, значит скорость в этот момент максимальна.
скорость в в момент (т=2) равна 24*2 - 6*2*2=24 ответ: 24. ... второе честно не знаю. 3) Здесь имеем S = 2 * a^2 + 4 * a * h; V = a^2 * h. Из S получим h = 150 / a - a / 2. Подставим h в V: V = 150*a - a^3/2. При максимальном V производная этой функции равна 0. V' = 150 - 3 * a^2 / 2, a = 10. Теперь найдём h
(150 / 10 - 10 / 2 ) = 10, т. е. a = h, а параллелепипед - куб.
Lugovoi
20.08.2020
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.
Область значений функции
это ![[0;\pi]](/tpl/images/0742/6095/4b0a1.png)
Значит,
Ограничение на x есть.
Теперь чтобы решить это добро, возьмем косинус от левой и от правой части.
Так что применим это сюда:
Проверим
, значит, мы можем смело поделить на 
Получим
Теперь надо вернуться к ограничению:
Из целых чисел на этом отрезке есть только k=2
ответ: