Объяснение:
Порядок выбора не важен, поэтому применяется основная формула - сочетания без повторения.
1)
С₆² = 6!/(2!*4!) = 6*5/2 = 15 сп. для выбора 2 мальчиков из 6
С₇² = 7!/(2!*(7-2)! ) = 7*6*5!/ (2*5!) = 7*3 = 21 сп. для выбора 2 девочек из 7
Так как выбор данной команды осуществляется двумя последовательными действиями выбора девочек и мальчиков, то:
С₆² *С выбрать 2 мальчиков и 2 девочек
2)
С₆³ = 6!/(3!*(6-3)!) = 6*5*4*3!/2*3*3! = 20 сп. выбрать 3 мальчиков из 6
С₇¹ = 7 сп. выбрать 1 девочку из 7
С₆³ * С выбрать 3 мальчика и 1 девочку
3)
С выбрать 4 мальчиков из 6
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
ответ
1)
С₆² = 6!/(2!*4!) = 6*5/2 = 15 сп. для выбора 2 мальчиков из 6
С₇² = 7!/(2!*(7-2)! ) = 7*6*5!/ (2*5!) = 7*3 = 21 сп. для выбора 2 девочек из 7
Так как выбор данной команды осуществляется двумя последовательными действиями выбора девочек и мальчиков, то:
С₆² *С выбрать 2 мальчиков и 2 девочек
2)
С₆³ = 6!/(3!*(6-3)!) = 6*5*4*3!/2*3*3! = 20 сп. выбрать 3 мальчиков из 6
С₇¹ = 7 сп. выбрать 1 девочку из 7
С₆³ * С выбрать 3 мальчика и 1 девочку
3)
С выбрать 4 мальчиков из 6
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
ответ
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Найдите количество целочисленных решений неравенства |7х — 2| > 9 на отрезке [-4; 4].
7x < -7 7x > 11
x < -1 x > 11/7
-∞ -4 -1 11/7 4 +∞
[-4;-1) ∪ (11/7; 4]
целые:
-4; -3; -2; 2; 3; 4