В решении.
Объяснение:
Если сторону квадрата уменьшить на 4 дм, то получится квадрат, площадь которого на 72 дм² меньше площади данного. Найдите исходную сторону квадрата.
х - исходная сторона квадрата.
х - 4 - уменьшенная сторона квадрата.
х² - площадь исходного квадрата.
(х - 4)² - площадь уменьшенного квадрата.
По условию задачи уравнение:
х² - (х - 4)² = 72
х² - (х² - 8х + 16) = 72
х² - х² + 8х - 16 = 72
8х = 72 + 16
8х = 88
х = 11 (дм) - исходная сторона квадрата.
Проверка:
11² - (11 - 4)² = 11² - 7² = 121 - 49 = 72 (дм)², верно.
ответ:
ответ: 2 км/ч.
объяснение:
решение:
пусть скорость плота х км/ч,учитываем,что скорость плота равна скорости течения реки,тогда по течению скорость лодки равна (8 + х) км/ч, а против течения (8 - х) км/ч.
составим уравнение:
15/(8+x)+ 6/(8-x)=5/x;
(120-15х+48+6х)/(64+х²)=5/x;
(168-9x)/(64+x²)-5/x=0;
(168x-9x²-320+5x²)/(64х+х³)=0;
168x-9x²-320+5x²=0;
-4x²+168x-320=0;
сокращаем на -4:
x²-42x+80=0;
d=b²-4×a×c
d=(-42²)-4×1×80 = 1764-320=1444
d> 0, 2 корня
х₁=42+√1444/2×1 =42+38/2=80/2=40 (км/ч)---не подходит(так как плот не может плыть быстрее лодки, значит х=40 не является решением);
х₂=42-√1444/2×1=42-38/2=4/2=2 -(км/ч)---скорость течения реки;
ответ: 2 км/ч.
Поделитесь своими знаниями, ответьте на вопрос:
Две трубы вместе наполняют бассейн за 6 часов. одна первая труба наполняет бассейн на 5 часов быстрее, чем вторая. за какое время каждая труба, действуя отдельно, может наполнить бассейн?