pechyclava
?>

Синус икс делить на 5 равно корень из 3 делить на 2

Алгебра

Ответы

demakova1969
Смотри фотографию ниже
Синус икс делить на 5 равно корень из 3 делить на 2
xcho1020
1. Графический решения системы уравнений  смотри в приложении.

подстановки.
{3x  - y = 7     ⇒   у = 3х  - 7
{2x + 3y = 1
2х  + 3(3х  - 7)  = 1
2х  + 9х  - 21  = 1
11х =  1 + 21
11х = 22
х = 22 : 11
х = 2
у  = 3 * 2  -  7  = 6  -  7
у  = - 1
ответ :  ( 2 ;   - 1) .

сложения.
{3x  -  y  = 7            | * 3
{2x + 3y =  1

{9x  - 3y  =  21
{2x  + 3y  =  1
(9x  - 3y)  + (2x  + 3y) =  21 + 1
(9x + 2x)  + ( - 3y + 3y) = 22
11x  = 22
x  = 22 : 11
х = 2
3 * 2   - у  =  7
6   - у  = 7
-у  = 7 - 6
-у  = 1
у  =  - 1
ответ :  ( 2 ;   - 1) .
/3х-у=7 \2х+3у=1 решить систему графическим, подстановкой и сложением. 20
dima-a

35.

y = \pm\sqrt{2e^x + C}.

37.

s = C\cos t;\\t = \pm\arccos (Cs).

39.

y = \frac14 \ln^2 |Cx|.\ \ (x \geq C^{-1}).

Объяснение:

35.

Данное уравнение — ДУ первой степени первого порядка с разделяющимися переменными. В исходном случае переменные уже разделены, поэтому можно непосредственно проинтегрировать обе части уравнения:

\int e^x \, \text{d}x = \int y \, \text{d}y;\\\int e^x\, \text{d}x = e^x + C.\\\int y\, \text{d}y = \frac12 y^2 + C.\\\frac12 y^2 + C = e^x + C;\\\frac12 y^2 = e^x + C;\\y^2 = 2e^x + C;\\y = \pm\sqrt{2e^x + C}.

ответом будет являться найденная функция y.

37.

Данное уравнение — ДУ первой степени первого порядка с разделяющимися переменными. Разделим переменные:

\text{tg}\, t\, \text{d}t = - \frac{\text{d}s}{s}.

Теперь можно непосредственно проинтегрировать обе части уравнения:

\int \text{tg}\,t \, \text{d}t = - \int \frac{\text{d}s}{s};\\\int \text{tg}\,t \, \text{d}t = \int \frac{\sin t}{\cos t} \, \text{d}t = - \int \frac{\, \text{d}(\cos t)}{\cos t} = -\ln |\cos t| + C.\\\int \frac{\text{d}s}{s} = \ln |s| + C.\\-\ln |s| + C = -\ln |\cos t| + C;\\\ln |s| = \ln |C\cos t|;\\s = C\cos t;\\\cos t = Cs;\\t = \pm\arccos (Cs).

Не знаю, что здесь функция, а что переменная, так что в ответе будут в явном виде и s, как если бы переменной была t, и t, как если бы переменной была s.

39.

Данное уравнение — ДУ первой степени первого порядка с разделяющимися переменными. Разделим переменные:

\frac{dy}{\sqrt y} = \frac{dx}{x}.

Теперь можно непосредственно проинтегрировать обе части уравнения:

\int \frac{\text{d}y}{\sqrt y} = \int \frac{\text{d}x}{x};\\\int \frac{\text{d}y}{\sqrt y} = \int y^{-\frac12}\, \text{d}y = \frac{y^\frac12}{\frac12} = 2\sqrt y + C;\\\int \frac{\text{d}x}{x} = \ln|x| + C.\\2\sqrt y = \ln |x| + C;\\\sqrt y = \frac12 \ln|Cx|;\\y = \frac14 \ln^2 |Cx|.\ \ (x \geq C^{-1}).

ответом будет являться найденная функция y с условием.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Синус икс делить на 5 равно корень из 3 делить на 2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sotrudnik3
kseniay2006548
keshka12719
horst58
priexali
rozhkova
steam22-9940
FinKozhevnikov28
Nv-444
Ivanovna
sensenagon50
Dms161964937
yfetyukov2
Mashkov-Daniil1764
Avshirokova51