Обозначим тупые углы трапеции как х. Так как меньшее основание и боковая сторона равны, то диагональ образует равнобедренный треугольник. Угол при вершине этого треугольника равен тупому углу трапеции, тоесть х. Обозначим углы при основании треугольника как у и выразим х через у: х=180-2у. Из условия известно, что диагональ образует с боковой стороной угол в 120 градусов, тоесть х=у+120. Теперь приравняем и решим полученное уравнение: 180-2у=у+120 => 3у=60 => у=20. Тогда тупой угол трапеции равен х=20+120=140 градусов. И в конце концов, можем найти острый угол трапеции: 180-140=40. ответ: углы трапеции 140 и 40 градусов
jardi
05.01.2022
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь фигуры ограниченной графиками функции y=(x-1)^2+1 , y=-(x-3)^2+5
S=∫a,b(f(x)-g(x))dx
найдем пределы интегрирования
(x-1)^2+1=-(x-3)^2+5
x^2-2x+1+1=-x^2+6x-9+5
2x^2-8x+6=0
x^2-4x+3=0
x1=1 x2=3
a=1 b=3
S=∫1,3(-x^2+6x-9+5-(x^2-2x+1+1))dx=∫1,3(-2x^2+8x-6)dx=(-2x^3/3+4x^2-6x)|3,1=-2^3^3/3+4*3^2-6*3+2/3-4+6=-18+36+2/3-4+6=8/3