1)x<-2 -x-2<7x 7x+x>-2 8x>-2 x>-0,25 нет решения 2)x≥-2 x+2<7x 7x-x>2 6x>2 x>1/3 x∈(1/3;∞) ответ отрезку принадлежат 100 целых решений от 1 до 100 включительно
Овезова Игорь
18.10.2021
Построим график функции
Для начала упростим функцию
Найдем знаки под модульного выражения
_-__-__(-2)__+__-__(2)__+__+__
Наименьшее положительное значение параметра а найдем с параллельности прямых
График функции параллельный прямой если угловые коэффициенты будут совпадать, т.е.
Но нам важен положительный параметр, значит - минимальный.
Исследуем когда график будет касаться в точке (2;4) и (-2;4)
Подставив значения х=2 и у=4, получим
При а=1 система уравнений имеет одно решение
Если подставить и , получим
Наименьший параметр а=1.
sde19755511
18.10.2021
Отыщем область значений указанной функции. Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии: . Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть, , где . То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт . Теперь считаем, какие целые числа входят в полученную область значений. 0, 1, 2, 3 - и всё. Их ровно 4.
-x-2<7x
7x+x>-2
8x>-2
x>-0,25
нет решения
2)x≥-2
x+2<7x
7x-x>2
6x>2
x>1/3
x∈(1/3;∞)
ответ отрезку принадлежат 100 целых решений от 1 до 100 включительно