Преобразуем выражение:
(n+6)2-n2 = n²+12n+36-n²= 12n+36 = 12(n+3)
Число 24 можно представить как 12·2
Как видно, в обоих случаях имеется общий множитель 12.
Для того, чтобы данное выражение делилось на 24, нужно, чтобы его второй множитель делился на второй множитель в разложении числа 24, то есть на 2.
Иными словами, множитель (n+3) должен быть чётным.
Сумма двух чисел будет чётным числом, только если оба слагаемых или чётные, или нечётные числа.
Так как 3 - нечётное число, - то и n, следовательно, должно быть нечётным числом.
Таким образом, выражение (n+6)²-n² делится на 24, если n - нечётное число.
Поделитесь своими знаниями, ответьте на вопрос:
Найти значение выражения 7√3 tg(-570°)