Staroverovanatasa494
?>

Найдите все значения у при которых верно равенство 6(2у-5)+14=8(5-2у)

Алгебра

Ответы

gulyaizmailova
6(2у-5)+14=8(5-2у)
12у-30+14=40-16у
12у+16у=40+16
28у=56
у=56:28
у=2
Baidina
6(2у-5)+14=8( 5-2у);
12у-30+14=40-16у;
12у-16=40- 16у;
12у+16у =40+16;
28у=56;
у=2.
:)
mlf26
В задаче отсутствует вопрос. Исхожу из предположения, что требуется определить время движения. 
t = S/v = 400/v.
Но скорость задана не конкретным значением, а границами. Значит время можно только оценить.
 50<v<80  заменим обратными числами,при этом меняем знак неравенства.
1/50 > 1/v > 1/80. Запишем в привычном виде:  1/80 < 1/v < 1/50. Теперь умножим все части неравенства на 400.
400/80< 400/v< 400/50. 
5< t<8. Значит при заданных условиях время движения от 5 до 8 часов.
Kashtanov Anna

Правая часть уравнения должна быть неотрицательной:

sin2x \geq 0

2\pi k \leq 2x \leq \pi+2\pi k;k \in Z

\pi k \leq x \leq \frac{\pi}{2}+\pi k;k \in Z

То есть первая и третья четверти,где синус и косинус одного знака.

Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)

Рассмотрим выражение под модулем:

cosx+sinx

Попробуем найти максимум такой функции

cos^2x+sin^2x=1

cos^2x+2sinxcosx+sin^2x=1+2sinxcosx

(cosx+sinx)^2=1+sin2x

Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.

Правая часть принимает наибольшее значение при

sin2x=1

x=\frac{\pi}{4}+\pi k,k \in Z

max|cosx+sinx|=\sqrt{2}

max(\sqrt{2}sin2x})=\sqrt{2}

Разделим обе части уравнения на \sqrt{2}

|\frac{\sqrt{2}}{2}cosx+\frac{\sqrt{2}}{2}sinx|=sin2x

|sin(x+\frac{\pi}{4})|=sin2x

Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.

Рассмотрим аргументы обоих синусов на полуинтервале:

x \in [0;\frac{\pi}{4})

x+\frac{\pi}{4}x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Рассмотрим аргументы обоих синусов на полуинтервале:

На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.

x \in (\frac{\pi}{4};\frac{\pi}{2}]

x+\frac{\pi}{4}<x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Очевидно,что единственным решением уравнения является:

x=\frac{\pi}{4}+\pi k,k \in Z

 

 

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите все значения у при которых верно равенство 6(2у-5)+14=8(5-2у)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shangina1997507
ВостриковаСтародубцева1980
Xв 3 степени +x во 2 степени -4x-4=0
tkmandarin8376
Yuliya mikhail
armynis8
innaglobal21
sashaleb88
Maksim Dmitrii1579
Elen-Fler
optima3559
olgakozelskaa492
AlekseiBunina1895
omigunova39
pravovoimeridian
zamkova836