V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
АлександрАнатолий
22.02.2022
Пусть первый катет равен см, тогда второй катет - см. Площадь прямоугольного треугольника равна , что составляет 210 см² или перепишем сразу
По теореме Пифагора:
Составим и решим систему уравнений
Из второго уравнения имеем, что . Тогда имеем несколько случаев.
Случай 1. Если , то и подставим в первое уравнение.
Согласно теореме виета см и корень не удовлетворяет заданному условию см
Случай 2. Если ,то подставив в первое уравнение, получим
Согласно теореме Виета см и корень не удовлетворяет условию
Катеты прямоугольного треугольника равны 35 см и 12 см или 12 см и 35 см.
Объяснение:22 ответ 22