Никита_Тузов
?>

Решить уравнение (подробно) 2sin² x/2=cos (3π/2+x/2)

Алгебра

Ответы

kush-2640
2Sin²x/2 - Cos(3П/2 + x/2) = 0
2Sin²x/2 - Sinx/2 =0
Sinx/2(2Sinx/2 - 1) =0
Или Sinx/2 = 0 и тогда x/2 = Пn, n э z       x = 2Пn, n э z
Или Sinx/2 = 1/2 и тогда x/2 = (- 1)^n П/6 + Пn, n э z       x = (- 1)^n П /3 + 2Пn, n э z
AkimovaI1608

Исследовать функцию y=-x^4+8x^2-9 и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. Точки пересечения с осями координат: 

Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.

Квадратное уравнение, решаем относительно n: 

Ищем дискриминант:

D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

Дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

Обратная замена: х = √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

 x₃ = √6,645751 = 2,57793,     x₄ = -2,577935.

Получаем 4 точки пересечения с осью Ох:

(1,163722; 0),  (-1,16372; 0),  (2,57793; 0),  (-2,57793; 0).

 x₃ = √6,645751 = 2,57793,

Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

Имеем 3 критические точки: х = 0, х = 2 и х = -2.

Определяем знаки производной вблизи критических точек.

x =   -3       -2      -1      0      1       2       3

y' =   60      0      -12     0     12      0     -60.

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

Минимум функции в точке: x = 0.

Максимумы функции в точках:

x = -2.

x = 2.

Убывает на промежутках (-2, 0] U [2, +oo).

Возрастает на промежутках (-oo, -2] U [0, 2).

 6. Вычисление второй производной: y''=-12х² + 16 , 

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции: 

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

Вторая производная  4 \left(- 3 x^{2} + 4\right) = 0.

Решаем это уравнение

Корни этого уравнения

x_{1} = - \frac{2 \sqrt{3}}{3}.

x_{2} = \frac{2 \sqrt{3}}{3}.

7. Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)

 8. Искомый график функции в приложении.

Подробнее - на -

Объяснение:

PopovViktorovna

а) x² + 4x + 10 ≥ 0

D = 4² - 4· 10 = - 24

График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому  у > 0  и ответ

2) Решением неравенства является вся числовая прямая

b) -x² + 10x - 25 > 0

-(х - 5)² > 0

Поскольку -(х - 5)² < 0 при любых х, то ответ

1) Неравенство не имеет решений

c) x² + 3x + 2 ≤ 0

D = 3² - 4 · 2 = 1

x₁ = 0.5(-3 - 1) = -2

x₂ = 0.5(-3 + 1) = -1

График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ =  -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ

4) Решением неравенства является закрытый промежуток.

d) -x² + 4 < 0

x² - 4 > 0

График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ =  -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ

6) Решением неравенства является объединение двух промежутков.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить уравнение (подробно) 2sin² x/2=cos (3π/2+x/2)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

olga0909196323
gena1981007
mtcover
Zeegofer
citioil15
vanvangog199826
rstas
fancy-decor67
Ruslan Zarekovkin
elav20134518
КараханянКусков
Ивлев1508
PopovViktorovna
gurman171
neganovaarxi