alisabutusova
?>

При каких значениях n дробь 4/n неправильная?

Алгебра

Ответы

yurassolo747
Возможно когда  n равно 0
так как на ноль делить нельяя
aamer9992680
При значениях: 1, 2, 3, 4.
dyatchina63
Прощу прощения за задержку.
Разложить на множители, это означает упростить данное выражение. 
В данном выражении, мы можем увидеть общие множители abc .
Можно конечно разложить так:

abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже.
Поэтому не имеет смысла несколько раз упрощать и упрощать.
Поступаем так:
Находим минимальную степень а, b и с.
И получаем, что можно упростить так:
a^2b^2c^3(27ac^2-36b^2)
Можем так же заметить что 27 и 36 делятся на 9.
А значит имеем право упростить еще :
(9a^2b^2c^3)(3ac^2-4b^2)
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)

Если что то не понятно, задайте вопрос в комментарии :)
saljagindima

1)

По теореме Виета для уравнения 4х²-6х-1 :

х1+х2 = 1.5

х1*х2 = -0.25

2)

По теореме Виета для нового уравнения :

В = -(у1+у2) = -((2/х1³)-1 +(2/х2³)-1) = 578

С = -(у1*у2) = ((2/х1³)-1)*((2/х2³)-1) = 321

Уравнение : y²+578y+321 = 0

ответ : у²+578у+321 = 0

P.S если интересно как я из -((2/х1³)-1 +(2/х2³)-1) получил 578, то я сейчас примерно покажу (для удобства пусть х1 будет х, а х2 будет у) :

- ( \frac{2}{ {x}^{3} } + \frac{2}{ {y}^{3} } ) + 2 = - ( \frac{2( {x}^{3} + {y}^{3}) }{{(xy)}^{3} } ) + 2 = - ( \frac{2(x + y)( {x}^{2} + {y}^{2} - xy)}{{(xy)}^{3} } ) + 2 = - ( \frac{2(x + y)( {(x + y)}^{2} - 3xy)}{{(xy)}^{3} } ) + 2

Ну и уже по теореме Виета (х+у = 1.5, х*у = -0.25) я подставил значения и решил, с умножением там примерно тоже самое)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каких значениях n дробь 4/n неправильная?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Natalya1070
ukkavtodor6
Makarov
majorovnatalya5
Альберт Луиза1595
anatolevich1931
andreykrutenko
sashab82
aggeeva
antoha512
nunabat457
annakuzina2023
Tarapovskaya
SitnikovYurii5
gon4arovanat6