Уравнение движения x=60-3t-0,1t^2 координата x(2)=60-3×2-0,1×4=53,6м перемещение s=v0t+at^2/2 s=3×2+0,1×4=6,4м проекция скорости v=v0+at v=-3-0,2×2=-3,4м/с минус тк против оси модуль скорости v=3,4м/с
MN-Natusik80
24.08.2020
Подставим корни х = 3 и х=-4 в уравнение х³+рх+k = 0 для того, чтобы найти р и k. Получим систему двух уравнений с двумя неизвестными. {3³+3p+k = 0 {(-4)³-4p+k = 0
Упростим: {3p+k = - 27 {-4p+k = 64
Из первого уравнения вычтем второе и получим: 3p+k+4p-k = - 27 - 64 7p = - 81 p = - 81 : 7 p = - 13 Подставим р = - 13 в первое уравнение 3p+k = - 27 и получим: 3·(-13) + k = - 27 -39 +k = - 27 k = 39 - 27 k = 12
Теперь при p = -13 и k = 12 наш многочлен примет вид: x³-13x+12.
Этому уравнению x³-13x+12 = 0 удовлетворяют данные корни х₁ = 3 х₂ = - 4 Проверим х=1 и х = - 1 При х = 1 получаем 1³-13·1+12=0 1+12-13=0 0 = 0 верное равенство, значит, х₃= 1. При х = - 1 получаем (-1)³-13·(-1)+12=0 -1+13+12=0 24 ≠ 0 ,значит, х ≠ - 1 ответ: х₃= 1.
ananyananar
24.08.2020
Подставим корни х = 3 и х=-4 в уравнение х³+рх+k = 0 для того, чтобы найти р и k. Получим систему двух уравнений с двумя неизвестными. {3³+3p+k = 0 {(-4)³-4p+k = 0
Упростим: {3p+k = - 27 {-4p+k = 64
Из первого уравнения вычтем второе и получим: 3p+k+4p-k = - 27 - 64 7p = - 81 p = - 81 : 7 p = - 13 Подставим р = - 13 в первое уравнение 3p+k = - 27 и получим: 3·(-13) + k = - 27 -39 +k = - 27 k = 39 - 27 k = 12
Теперь при p = -13 и k = 12 наш многочлен примет вид: x³-13x+12.
Этому уравнению x³-13x+12 = 0 удовлетворяют данные корни х₁ = 3 х₂ = - 4 Проверим х=1 и х = - 1 При х = 1 получаем 1³-13·1+12=0 1+12-13=0 0 = 0 верное равенство, значит, х₃= 1. При х = - 1 получаем (-1)³-13·(-1)+12=0 -1+13+12=0 24 ≠ 0 ,значит, х ≠ - 1 ответ: х₃= 1.