Объяснение:
Подайте в виде произведения выражение.
здесь имеем дело с суммой a³+b³=(a+b)(a²-ab+b²)
и разностью кубов a³-b³ = (a-b)(a²+ab+b²).
***
1) a⁶ - 8= (a²)³ -(2)³ = (a²-2)(a⁴+2a² + 4);
***
2) m¹² +27 = (m⁴)³ + (3)³ = (m⁴+3)(m⁸-3m⁴+9);
***
3) a³-b¹⁵c¹⁸ = (a)³ - (b⁵c⁶)³ = (a-b⁵c⁶)(a²+ab⁵c⁶+b¹⁰c¹²);
***
4) 1-a²¹b⁹ = (1)³ - (a⁷b³)³ = (1-a⁷b³)(1 + a⁷b³ + a¹⁴b⁶);
***
5) 125c³d³+0.008b³ = (5cd)³ + (0.2b)³ = (5cd+0.2b)(25c²d²-bcd+0.04b²);
***
6) 64/729x³ - 27/1000y⁶ = (4/9x)³ - (3/10y²)³ =
= (4/9x- 3/10y²)(16/81x²+2/15xy²+9/100y⁴).
1) Находим точки пересечения функций у=4-х² и у=2-х
4-х²=2-х
х²-х-2=0
х₁*х₂=-2
х₁+х₂=1 => x₁=2; x₂=-1
2) Находим площадь фигуры, заключённой между графиками функций
у=4-х² и у=2-х
\begin{gathered} S=\int\limits^2_{-1} {(4-x^2-3+x)} \, dx =\int\limits^2_{-1} {(1-x^2+x)} \, dx=(x- \frac{x^3}{3}+ \frac{x^2}{2})|^2_{-1}==2-8/3+2-(-1+1/3+1/2)=4-8/3+1-1/3-1/2==5-1/2-3=2-1/2=1 \frac{1}{2} \end{gathered}S=−1∫2(4−x2−3+x)dx=−1∫2(1−x2+x)dx=(x−3x3+2x2)∣−12==2−8/3+2−(−1+1/3+1/2)=4−8/3+1−1/3−1/2==5−1/2−3=2−1/2=121
Поделитесь своими знаниями, ответьте на вопрос:
10 ! у пети дома есть ириски, их меньше 100. это 11, 4% от числа ирисок, что были вчера. сколько ирисок было вчера?